Common Data Elements, Scalable Data Management Infrastructure, and Analytics Workflows for Large-Scale Neuroimaging Studies

被引:6
|
作者
Kuplicki, Rayus [1 ]
Touthang, James [1 ]
Al Zoubi, Obada [1 ]
Mayeli, Ahmad [1 ]
Misaki, Masaya [1 ]
Aupperle, Robin L. [1 ,2 ]
Teague, T. Kent [3 ,4 ,5 ]
McKinney, Brett A. [6 ,7 ]
Paulus, Martin P. [1 ]
Bodurka, Jerzy [1 ,8 ]
机构
[1] Laureate Inst Brain Res, Tulsa, OK 74136 USA
[2] Univ Tulsa, Dept Community Med, Oxley Coll Hlth Sci, Tulsa, OK 74104 USA
[3] Univ Oklahoma, Dept Surg, Sch Community Med, Tulsa, OK USA
[4] Univ Oklahoma, Dept Psychiat, Sch Community Med, Tulsa, OK USA
[5] Oklahoma State Univ, Dept Biochem & Microbiol, Ctr Hlth Sci, Tulsa, OK USA
[6] Univ Tulsa, Dept Math, Tulsa, OK 74104 USA
[7] Univ Tulsa, Tandy Sch Comp Sci, Tulsa, OK 74104 USA
[8] Univ Oklahoma, Stephenson Sch Biomed Engn, Norman, OK 73019 USA
来源
FRONTIERS IN PSYCHIATRY | 2021年 / 12卷
基金
美国国家卫生研究院;
关键词
human brain; neuroimaging; multi-level assessment; large-scale studies; common data element; data processing pipelines; scalable analytics; bids format; MOTION CORRECTION; FMRI; ACCURATE; ROBUST;
D O I
10.3389/fpsyt.2021.682495
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Neuroscience studies require considerable bioinformatic support and expertise. Numerous high-dimensional and multimodal datasets must be preprocessed and integrated to create robust and reproducible analysis pipelines. We describe a common data elements and scalable data management infrastructure that allows multiple analytics workflows to facilitate preprocessing, analysis and sharing of large-scale multi-level data. The process uses the Brain Imaging Data Structure (BIDS) format and supports MRI, fMRI, EEG, clinical, and laboratory data. The infrastructure provides support for other datasets such as Fitbit and flexibility for developers to customize the integration of new types of data. Exemplar results from 200+ participants and 11 different pipelines demonstrate the utility of the infrastructure.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Scalable computing for large-scale multimedia data analytics
    Karuppiah, Marimuthu
    Chaudhry, Shehzad Ashraf
    Alsharif, Mohammed H.
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, 62 (03) : 601 - 603
  • [2] Evolving large-scale data stream analytics based on scalable PANFIS
    Za'in, Choiru
    Pratama, Mahardhika
    Pardede, Eric
    KNOWLEDGE-BASED SYSTEMS, 2019, 166 : 186 - 197
  • [3] TerraBrasilis: A Spatial Data Analytics Infrastructure for Large-Scale Thematic Mapping
    Assis, Luiz Fernando F. G.
    Ferreira, Karine Reis
    Vinhas, Lubia
    Maurano, Luis
    Almeida, Claudio
    Carvalho, Andre
    Rodrigues, Jether
    Maciel, Adeline
    Camargo, Claudinei
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (11)
  • [4] Large Scale Infrastructure for Health Data Analytics
    Crossfield, Samantha
    Johnson, Owen
    Fleming, Thomas
    2016 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2016, : 306 - 306
  • [5] A Generic and Scalable Pipeline for Large-Scale Analytics of Continuous Aircraft Engine Data
    Forest, Florent
    Lacaille, Jerome
    Lebbah, Mustapha
    Azzag, Hanene
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 1918 - 1924
  • [6] Performance models of data parallel DAG workflows for large scale data analytics
    Shi, Juwei
    Lu, Jiaheng
    DISTRIBUTED AND PARALLEL DATABASES, 2023, 41 (03) : 299 - 329
  • [7] Performance models of data parallel DAG workflows for large scale data analytics
    Juwei Shi
    Jiaheng Lu
    Distributed and Parallel Databases, 2023, 41 : 299 - 329
  • [8] Performance Models of Data Parallel DAG Workflows for Large Scale Data Analytics
    Shi, Juwei
    Lu, Jiaheng
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW 2021), 2021, : 104 - 111
  • [9] An Infrastructure for Automating Large-scale Performance Studies and Data Processing
    Jayasinghe, Deepal
    Kimball, Josh
    Zhu, Tao
    Choudhary, Siddharth
    Pu, Calton
    2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,
  • [10] A Hybrid Data Model for Large-Scale Analytics
    Feo, John
    2018 ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS, 2018, : 269 - 269