Robust Image Registration using Adaptive Expectation Maximisation based PCA

被引:0
|
作者
Reel, Parminder Singh [1 ]
Dooley, Laurence S. [1 ]
Wong, K. C. P. [1 ]
Boerner, Anko [2 ]
机构
[1] Open Univ, Dept Comp & Commun, Milton Keynes, Bucks, England
[2] German Aerosp Ctr DLR, Opt Sensor Syst, Berlin, Germany
关键词
Principal component analysis;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Images having either the same or different modalities can be aligned using the systematic process of image registration. Inherent image characteristics including intensity non-uniformities in magnetic resonance images and large homogeneous non-vascular regions in retinal and other generic image types however, pose a significant challenge to their registration. This paper presents an adaptive expectation maximisation for principal component analysis with mutual information (aEMPCA-MI) similarity measure for image registration. It introduces a novel iterative process to adaptively select the most significant principal components using Kaiser rule and applies 4-pixel connectivity for feature extraction together with Wichard's bin size selection in calculating the MI. Both quantitative and qualitative results on a diverse range of image datasets, conclusively demonstrate the superior image registration performance of aEMPCA-MI compared with existing MI-based similarity measures.
引用
收藏
页码:105 / 108
页数:4
相关论文
共 50 条
  • [41] Image Registration Method Based on PCA-SIFT Feature Detection
    Wang Yanwei
    Yu Huili
    ADVANCES IN MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-4, 2013, 712-715 : 2395 - 2398
  • [42] Estimating fluorescence lifetimes using the expectation-maximisation algorithm
    Gao, Kai
    Li, David Day-Uei
    ELECTRONICS LETTERS, 2018, 54 (01) : 14 - 15
  • [43] Image registration using robust M-estimators
    Arya, K. V.
    Gupta, P.
    Kalra, P. K.
    Mitra, P.
    PATTERN RECOGNITION LETTERS, 2007, 28 (15) : 1957 - 1968
  • [44] Using selective correlation coefficient for robust image registration
    Kaneko, S
    Satoh, Y
    Igarashi, S
    PATTERN RECOGNITION, 2003, 36 (05) : 1165 - 1173
  • [45] Image Registration Using Consistent Robust Point Matching
    Yang, Xuan
    Pei, Jihong
    Shi, Jingli
    2013 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2013,
  • [46] Estimating fluorescence lifetimes using the expectation-maximisation algorithm
    Gao K.
    Li D.D.-U.
    Gao, Kai (gaokai000@hotmail.com), 2018, John Wiley and Sons Inc (54) : 14 - 16
  • [47] Image Fusion for Mars Data Using Mix of Robust PCA
    Wu, Jiang-Long
    Tian, Xiao-Lin
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2017, 31 (01)
  • [48] Using an Adaptive Invasion-based Model for Fast Range Image Registration
    De Falco, Ivanoe
    Della Cioppa, Antonio
    Maisto, Domenico
    Scafuri, Umberto
    Tarantino, Ernesto
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 1095 - 1102
  • [49] Direct Reconstruction of Parametric Images Using Any Spatiotemporal 4D Image Based Model and Maximum Likelihood Expectation Maximisation
    Matthews, Julian C.
    Angelis, Georgios I.
    Kotasidis, Fotis A.
    Markiewicz, Pawel J.
    Reader, Andrew J.
    2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 2435 - 2441
  • [50] Robust image registration based on feedforward neural networks
    Elhanany, I
    Sheinfeld, M
    Beck, A
    Kadmon, Y
    Tal, N
    Tirosh, D
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 1507 - 1511