Robust Image Registration using Adaptive Expectation Maximisation based PCA

被引:0
|
作者
Reel, Parminder Singh [1 ]
Dooley, Laurence S. [1 ]
Wong, K. C. P. [1 ]
Boerner, Anko [2 ]
机构
[1] Open Univ, Dept Comp & Commun, Milton Keynes, Bucks, England
[2] German Aerosp Ctr DLR, Opt Sensor Syst, Berlin, Germany
关键词
Principal component analysis;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Images having either the same or different modalities can be aligned using the systematic process of image registration. Inherent image characteristics including intensity non-uniformities in magnetic resonance images and large homogeneous non-vascular regions in retinal and other generic image types however, pose a significant challenge to their registration. This paper presents an adaptive expectation maximisation for principal component analysis with mutual information (aEMPCA-MI) similarity measure for image registration. It introduces a novel iterative process to adaptively select the most significant principal components using Kaiser rule and applies 4-pixel connectivity for feature extraction together with Wichard's bin size selection in calculating the MI. Both quantitative and qualitative results on a diverse range of image datasets, conclusively demonstrate the superior image registration performance of aEMPCA-MI compared with existing MI-based similarity measures.
引用
收藏
页码:105 / 108
页数:4
相关论文
共 50 条
  • [21] Model-Based Deep Learning PET Image Reconstruction Using Forward-Backward Splitting Expectation Maximisation
    Mehranian, Abolfazl
    Reader, Andrew J.
    2019 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2019,
  • [22] Robust Adaptive Principal Component Analysis Based on Intergraph Matrix for Medical Image Registration
    Leng, Chengcai
    Xiao, Jinjun
    Li, Min
    Zhang, Haipeng
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2015, 2015
  • [23] A robust cepstrum-based algorithm for image registration using projections
    Sarnel, H
    2002 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I AND II, 2002, : 813 - 816
  • [24] Intensity-based image registration using robust correlation coefficients
    Kim, J
    Fessler, JA
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (11) : 1430 - 1444
  • [25] Rigid medical image registration using PCA neural network
    Shang, Lifeng
    Lv, Jian Cheng
    Yi, Zhang
    NEUROCOMPUTING, 2006, 69 (13-15) : 1717 - 1722
  • [26] Two-dimensional PCA combined with PCA for neural network based image registration
    Xu, Anbang
    Jin, Xin
    Guo, Ping
    ADVANCES IN NATURAL COMPUTATION, PT 2, 2006, 4222 : 696 - 705
  • [27] Robust Image Registration Using Structure Features
    Shi, Qiang
    Ma, Guorui
    Zhang, Feifei
    Chen, Wangli
    Qin, Qianqing
    Duo, Huang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (12) : 2045 - 2049
  • [28] Robust optimization using disturbance for image registration
    Gan, Rui
    Chung, Albert C. S.
    BIOMEDICAL IMAGE REGISTRATION, PROCEEDINGS, 2006, 4057 : 280 - 288
  • [29] PCA-based groupwise image registration for quantitative MRI
    Huizinga, W.
    Poot, D. H. J.
    Guyader, J-M.
    Klaassen, R.
    Coolen, B. F.
    van Kranenburg, M.
    van Geuns, R. J. M.
    Uitterdijk, A.
    Polfliet, M.
    Vandemeulebroucke, J.
    Leemans, A.
    Niessen, W. J.
    Klein, S.
    MEDICAL IMAGE ANALYSIS, 2016, 29 : 65 - 78
  • [30] Learning dynamical models using expectation-maximisation
    North, B
    Blake, A
    SIXTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, 1998, : 384 - 389