An NMF-framework for Unifying Posterior Probabilistic Clustering and Probabilistic Latent Semantic Indexing

被引:1
|
作者
Zhang, Zhong-Yuan [1 ]
Li, Tao [2 ]
Ding, Chris [3 ]
Tang, Jie [4 ]
机构
[1] Cent Univ Finance & Econ, Sch Math & Stat, Beijing, Peoples R China
[2] Florida Int Univ, Sch Comp & Informat Sci, Miami, FL 33199 USA
[3] Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76019 USA
[4] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Posterior probabilistic clustering; Probabilistic latent semantic indexing; NMF-framework; MATRIX FACTORIZATION;
D O I
10.1080/03610926.2012.714034
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In document clustering, a document may be assigned to multiple clusters and the probabilities of a document belonging to different clusters are directly normalized. We propose a new Posterior Probabilistic Clustering (PPC) model that has this normalization property. The clustering model is based on Nonnegative Matrix Factorization (NMF) and flexible such that if we use class conditional probability normalization, the model reduces to Probabilistic Latent Semantic Indexing (PLSI). Systematic comparison and evaluation indicates that PPC is competitive with other state-of-art clustering methods. Furthermore, the results of PPC are more sparse and orthogonal, both of which are highly desirable.
引用
收藏
页码:4011 / 4024
页数:14
相关论文
共 50 条
  • [31] Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing
    Su, Emily Chia-Yu
    Chang, Jia-Ming
    Cheng, Cheng-Wei
    Sung, Ting-Yi
    Hsu, Wen-Lian
    BMC BIOINFORMATICS, 2012, 13
  • [32] Bucket elimination: A unifying framework for probabilistic inference
    Dechter, R
    LEARNING IN GRAPHICAL MODELS, 1998, 89 : 75 - 104
  • [33] Bucket elimination: A unifying framework for probabilistic inference
    Dechter, R
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 1996, : 211 - 219
  • [34] Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis
    Wang, Jin
    Sun, Xiangping
    Nahavandi, Saeid
    Kouzani, Abbas
    Wu, Yuchuan
    She, Mary
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 117 (02) : 238 - 246
  • [35] Unsupervised learning by probabilistic latent semantic analysis
    Hofmann, T
    MACHINE LEARNING, 2001, 42 (1-2) : 177 - 196
  • [36] Brain Morphometry by Probabilistic Latent Semantic Analysis
    Castellani, U.
    Perina, A.
    Murino, V.
    Bellani, M.
    Rambaldelli, G.
    Tansella, M.
    Brambilla, P.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT II,, 2010, 6362 : 177 - +
  • [37] Symmetrization and overfitting in probabilistic latent semantic analysis
    Leksin V.A.
    Pattern Recognition and Image Analysis, 2009, 19 (04) : 565 - 574
  • [38] Unsupervised Learning by Probabilistic Latent Semantic Analysis
    Thomas Hofmann
    Machine Learning, 2001, 42 : 177 - 196
  • [39] On the Probabilistic Latent Semantic Analysis Generalization as the Singular Value Decomposition Probabilistic Image
    Pau Figuera Vinué
    Pablo García Bringas
    Journal of Statistical Theory and Applications, 2020, 19 : 286 - 296
  • [40] On the Probabilistic Latent Semantic Analysis Generalization as the Singular Value Decomposition Probabilistic Image
    Figuera Vinue, Pau
    Garcia Bringas, Pablo
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2020, 19 (02): : 286 - 296