Protein conformational flexibility prediction using machine learning

被引:12
|
作者
Trott, Oleg [1 ]
Siggers, Ken [1 ]
Rost, Burkhard [1 ]
Palmer, Arthur G., III [1 ]
机构
[1] Columbia Univ Coll Phys & Surg, Dept Biochem & Mol Biophys, New York, NY 10032 USA
关键词
fibronectin; FREAC-11; generalized order parameter; NMR; neural network; relaxation; tenascin;
D O I
10.1016/j.jmr.2008.01.011
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Using a data set of 16 proteins, a neural network has been trained to predict backbone N-15 generalized order parameters from the three-dimensional structures of proteins. The final network parameterization contains six input features. The average prediction accuracy, as measured by the Pearson's correlation coefficient between experimental and predicted values of the square of the generalized order parameter is > 0.70. Predicted order parameters for non-terminal amino acid residues depends most strongly on the local packing density and the probability that the residue is located in regular secondary structure. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 50 条
  • [41] RCA Prediction using Machine Learning
    Lalwani, Hiro
    Gupta, Rachit
    Srivastava, Sandeep
    Jayaram, Sahana
    2019 5TH IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2019), 2019,
  • [42] Diabetes Prediction using Machine Learning
    Kharkwal, Tarun
    Meena, Shweta
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (02) : 6999 - 7005
  • [43] Crime Prediction Using Machine Learning
    Ling, Hneah Guey
    Jian, Teng Wei
    Mohanan, Vasuky
    Yeo, Sook Fern
    Jothi, Neesha
    FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE AIOT ERA, VOL 1, FONES-AIOT 2024, 2024, 1035 : 92 - 103
  • [44] Pandemia Prediction Using Machine Learning
    Nasir, Amir
    Makki, Seyed Vahab AL-Din
    Al-Sabbagh, Ali
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (05): : 211 - 214
  • [45] Prediction of Visitors using Machine Learning
    Son, Kyoungho
    Byun, Yungcheol
    Lee, Sangjoon
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATICS AND BIOMEDICAL SCIENCES (ICIIBMS), 2018, : 138 - 139
  • [46] PREDICTION OF MICROCLIMATES USING MACHINE LEARNING
    Sippy, Rachel
    Herrera, Diego
    Gaus, David
    Gangnon, Ronald
    Patz, Jonathan
    Osorio, Jorge
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2019, 101 : 230 - 231
  • [47] Disease Prediction using Machine Learning
    Dubey, Subham
    Banik, Sreerupa
    Ghosh, Deba
    Dey, Akash
    Das, Rishabh
    Dey, Ipsita
    Chowdhury, Sagarika
    Dey, Prianka
    2024 2ND WORLD CONFERENCE ON COMMUNICATION & COMPUTING, WCONF 2024, 2024,
  • [48] Enhanced Prediction of Conformational Flexibility and Phosphorylation in Proteins
    Swaminathan, Karthikeyan
    Adamczak, Rafal
    Porollo, Aleksey
    Metier, Jarostaw
    ADVANCES IN COMPUTATIONAL BIOLOGY, 2010, 680 : 307 - 319
  • [49] Headnote Prediction Using Machine Learning
    Mahar, Sarmad
    Zafar, Sahar
    Nishat, Kamran
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2021, 18 (05) : 678 - 685
  • [50] Biophysical prediction of protein–peptide interactions and signaling networks using machine learning
    Joseph M. Cunningham
    Grigoriy Koytiger
    Peter K. Sorger
    Mohammed AlQuraishi
    Nature Methods, 2020, 17 : 175 - 183