Protein conformational flexibility prediction using machine learning

被引:12
|
作者
Trott, Oleg [1 ]
Siggers, Ken [1 ]
Rost, Burkhard [1 ]
Palmer, Arthur G., III [1 ]
机构
[1] Columbia Univ Coll Phys & Surg, Dept Biochem & Mol Biophys, New York, NY 10032 USA
关键词
fibronectin; FREAC-11; generalized order parameter; NMR; neural network; relaxation; tenascin;
D O I
10.1016/j.jmr.2008.01.011
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Using a data set of 16 proteins, a neural network has been trained to predict backbone N-15 generalized order parameters from the three-dimensional structures of proteins. The final network parameterization contains six input features. The average prediction accuracy, as measured by the Pearson's correlation coefficient between experimental and predicted values of the square of the generalized order parameter is > 0.70. Predicted order parameters for non-terminal amino acid residues depends most strongly on the local packing density and the probability that the residue is located in regular secondary structure. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 50 条
  • [21] Redefining the Protein Kinase Conformational Space with Machine Learning
    Ung, Peter Man-Un
    Rahman, Rayees
    Schlessinger, Avner
    CELL CHEMICAL BIOLOGY, 2018, 25 (07): : 916 - +
  • [22] Deep learning approaches for conformational flexibility and switching properties in protein design
    Rudden, Lucas S. P.
    Hijazi, Mahdi
    Barth, Patrick
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [23] Residential Load Forecasting for Flexibility Prediction Using Machine Learning-Based Regression Model
    Ahmadiahangar, Roya
    Haring, Tobias
    Rosin, Argo
    Korotko, Tarmo
    Martins, Jodo
    2019 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2019 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2019,
  • [24] Protein structure prediction (RMSD ≤ 5 Å) using machine learning models
    Pathak, Yadunath
    Rana, Prashant Singh
    Singh, P. K.
    Saraswat, Mukesh
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 14 (01) : 71 - 85
  • [25] Prediction of protein corona on nanomaterials by machine learning using novel descriptors
    Duan, Yaokai
    Coreas, Roxana
    Liu, Yang
    Bitounis, Dimitrios
    Zhang, Zhenyuan
    Parviz, Dorsa
    Strano, Michael
    Demokritou, Philip
    Zhong, Wenwan
    NANOIMPACT, 2020, 17
  • [26] Computational Prediction of lncRNA-Protein Interactions using Machine learning
    Mushtaq, Muhammad
    Naveed, Hammad
    Khalid, Zoya
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 2100 - 2103
  • [27] Modeling protein flexibility with conformational sampling improves ligand pose and bioactivity prediction
    Stafford, Kate
    Sorenson, Jon
    Wallach, Izhar
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [28] Classification and prediction of protein-protein interaction interface using machine learning algorithm
    Das, Subhrangshu
    Chakrabarti, Saikat
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [29] Stacked framework of machine learning classifiers for protein family prediction using protein characteristics
    Idhaya, T.
    Suruliandi, A.
    Raja, S. P.
    CURRENT SCIENCE, 2023, 125 (05): : 508 - 517
  • [30] Students' Flexibility in Online Education Using Machine Learning
    Thokala, Narendra
    Yeboah, Jones
    Nti, Isaac Kofi
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 241 - 247