On basic properties of the Ramanujan τ-function

被引:0
|
作者
Snurnitsyn, P. V. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
关键词
Ramanujan function tau(n); additive basis; Waring-Goldbach problem; modular form; ring of residues;
D O I
10.1134/S0001434611110101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the values of the Ramanujan function constitute an additive basis for the set of integers of order 8012.
引用
收藏
页码:723 / 729
页数:7
相关论文
共 50 条
  • [31] On Ramanujan sums of a real variable and a new Ramanujan expansion for the divisor function
    Matthew S. Fox
    Chaitanya Karamchedu
    The Ramanujan Journal, 2022, 58 : 229 - 237
  • [32] On Ramanujan sums of a real variable and a new Ramanujan expansion for the divisor function
    Fox, Matthew S.
    Karamchedu, Chaitanya
    RAMANUJAN JOURNAL, 2022, 58 (01): : 229 - 237
  • [33] Ramanujan's forty identities for Rogers-Ramanujan function - Introduction
    Berndt, Bruce C.
    Choi, Geumlan
    Choi, Youn-Seo
    Hahn, Heekyoung
    Yeap, Boon Pin
    Yee, Ae Ja
    Yesilyurt, Hamza
    Yi, Jinhee
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 188 (880) : 1 - +
  • [34] RAMANUJAN AND HYPERGEOMETRIC AND BASIC HYPERGEOMETRIC-SERIES (REPRINTED)
    ASKEY, R
    RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (01) : 37 - 86
  • [35] Basic functional equations of the Rogers-Ramanujan functions
    Son, Seung H.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (02) : 653 - 662
  • [36] PROPERTIES OF RAMANUJAN FILTER BANKS
    Vaidyanathan, P. P.
    Tenneti, S.
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2816 - 2820
  • [37] Odd values of the Ramanujan tau function
    Michael A. Bennett
    Adela Gherga
    Vandita Patel
    Samir Siksek
    Mathematische Annalen, 2022, 382 : 203 - 238
  • [38] Ramanujan’s function k, revisited
    Dongxi Ye
    The Ramanujan Journal, 2021, 56 : 931 - 952
  • [39] Some Ramanujan theta function identities
    Masal, Hemant
    Kendre, Subhash
    Bhate, Hemant
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025,
  • [40] RAMANUJAN AND THE CONGRUENCE PROPERTIES OF PARTITIONS
    RAMANATHAN, KG
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1980, 89 (03): : 133 - 157