Some approximation properties of Banach spaces and Banach lattices

被引:34
|
作者
Figiel, Tadeusz [1 ]
Johnson, William B. [2 ]
Pelczynski, Aleksander [3 ]
机构
[1] Polish Acad Sci, Inst Math, PL-81825 Sopot, Poland
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
关键词
LOCAL UNCONDITIONAL STRUCTURE; RADON-NIKODYM PROPERTY; EXTENSIONS; SETS;
D O I
10.1007/s11856-011-0048-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of the bounded approximation property = BAP (resp. the uniform approximation property = UAP) of a pair [Banach space, its subspace] is used to prove that if X is a a"' (a)-space, Y a subspace with the BAP (resp. UAP), then the quotient X/Y has the BAP (resp. UAP). If Q: X -> Z is a surjection, X is a a"' (1)-space and Z is a a"' (p) -space (1 a parts per thousand currency sign p a parts per thousand currency sign a), then ker Q has the UAP. A complemented subspace of a weakly sequentially complete Banach lattice has the separable complementation property = SCP. A criterion for a space with GL-l.u.st. to have the SCP is given. Spaces which are quotients of weakly sequentially complete lattices and are uncomplemented in their second duals are studied. Examples are given of spaces with the SCP which have subspaces that fail the SCP. The results are applied to spaces of measures on a compact Abelian group orthogonal to a fixed Sidon set and to Sobolev spaces of functions of bounded variation on a"e (n) .
引用
收藏
页码:199 / 231
页数:33
相关论文
共 50 条
  • [1] Some approximation properties of Banach spaces and Banach lattices
    Tadeusz Figiel
    William B. Johnson
    Aleksander Pełczyński
    Israel Journal of Mathematics, 2011, 183
  • [2] Positive Approximation Properties of Banach Lattices
    Chen, Dongyang
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (03): : 617 - 633
  • [3] APPROXIMATION PROPERTIES AND UNIVERSAL BANACH SPACES
    WOJTASZCYK, P
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1972, (31-3): : 395 - 398
  • [4] FREE BANACH SPACES AND THE APPROXIMATION PROPERTIES
    Godefroy, Gilles
    Ozawa, Narutaka
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (05) : 1681 - 1687
  • [5] Stochastic approximation properties in Banach spaces
    Fonf, VP
    Johnson, WB
    Pisier, G
    Preiss, D
    STUDIA MATHEMATICA, 2003, 159 (01) : 103 - 119
  • [6] On commuting approximation properties of Banach spaces
    Oja, Eve
    Zolk, Indrek
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 551 - 565
  • [7] Mean ergodicity on Banach lattices and Banach spaces
    Eduard Yu. Emel’yanov
    Manfred P.H. Wolff
    Archiv der Mathematik, 1999, 72 : 214 - 218
  • [8] Some properties of Banach spaces
    Bourgin, DG
    AMERICAN JOURNAL OF MATHEMATICS, 1942, 64 : 597 - 612
  • [9] Banach spaces and Banach lattices of singular functions
    Bernal-Gonzalez, L.
    Fernandez-Sanchez, J.
    Martinez-Gomez, M. E.
    Seoane-Sepulveda, J. B.
    STUDIA MATHEMATICA, 2021, 260 (02) : 167 - 193
  • [10] Mean ergodicity on Banach lattices and Banach spaces
    Emel'yanov, EY
    Wolff, MPH
    ARCHIV DER MATHEMATIK, 1999, 72 (03) : 214 - 218