Mean ergodicity on Banach lattices and Banach spaces

被引:0
|
作者
Eduard Yu. Emel’yanov
Manfred P.H. Wolff
机构
[1] Sobolev Institute of Mathematics at Novosibirsk,
[2] Universitetskii pr. 4,undefined
[3] RU-630090,undefined
[4] Novosibirsk,undefined
[5] Russia,undefined
[6] Mathematisches Institut der Universität Tübingen,undefined
[7] Auf der Morgenstelle 2,undefined
[8] D-720776 Tübingen,undefined
[9] Germany,undefined
来源
Archiv der Mathematik | 1999年 / 72卷
关键词
Banach Space; Special Classis; Positive Operator; Banach Lattice; Fredholm Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize properties of Banach spaces by mean ergodicity of operators belonging to special classes. More precisely, we prove: ¶ (i) The Banach lattice E has order continuous norm iff every power-order-bounded regular Fredholm operator is ergodic. (ii) The countably order complete Banach lattice is a KB-space iff every positive operator which possesses a quasi order bounded attractor is mean ergodic. (iii) The Banach space does not contain c0 if every Fredholm operator is ergodic.
引用
收藏
页码:214 / 218
页数:4
相关论文
共 50 条
  • [1] Mean ergodicity on Banach lattices and Banach spaces
    Emel'yanov, EY
    Wolff, MPH
    ARCHIV DER MATHEMATIK, 1999, 72 (03) : 214 - 218
  • [2] Banach spaces and Banach lattices of singular functions
    Bernal-Gonzalez, L.
    Fernandez-Sanchez, J.
    Martinez-Gomez, M. E.
    Seoane-Sepulveda, J. B.
    STUDIA MATHEMATICA, 2021, 260 (02) : 167 - 193
  • [3] Some approximation properties of Banach spaces and Banach lattices
    Figiel, Tadeusz
    Johnson, William B.
    Pelczynski, Aleksander
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 183 (01) : 199 - 231
  • [4] BANACH-LATTICES AND CYCLIC BANACH-SPACES
    SCHAEFER, HH
    PROCEEDINGS OF THE ROYAL IRISH ACADEMY SECTION A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, A 74 (18-3) : 283 - 289
  • [5] Some approximation properties of Banach spaces and Banach lattices
    Tadeusz Figiel
    William B. Johnson
    Aleksander Pełczyński
    Israel Journal of Mathematics, 2011, 183
  • [6] Sequence spaces on Banach lattices
    Botelho, Geraldo
    Causey, Ryan
    Navoyan, Khazhak V.
    RECENT TRENDS IN OPERATOR THEORY AND APPLICATIONS, 2019, 737 : 1 - 24
  • [7] Embeddings of Banach Spaces Into Banach Lattices and the Gordon–Lewis Property
    P.G. Casazza
    N.J. Nielsen
    Positivity, 2001, 5 : 297 - 321
  • [8] On ergodicity for operators with bounded resolvent in Banach spaces
    Mattila, Kirsti
    STUDIA MATHEMATICA, 2011, 204 (01) : 63 - 72
  • [10] Pentagon subspace lattices on Banach spaces
    Katavolos, A
    Lambrou, MS
    Longstaff, WE
    JOURNAL OF OPERATOR THEORY, 2001, 46 (02) : 355 - 380