Mean ergodicity on Banach lattices and Banach spaces

被引:0
|
作者
Eduard Yu. Emel’yanov
Manfred P.H. Wolff
机构
[1] Sobolev Institute of Mathematics at Novosibirsk,
[2] Universitetskii pr. 4,undefined
[3] RU-630090,undefined
[4] Novosibirsk,undefined
[5] Russia,undefined
[6] Mathematisches Institut der Universität Tübingen,undefined
[7] Auf der Morgenstelle 2,undefined
[8] D-720776 Tübingen,undefined
[9] Germany,undefined
来源
Archiv der Mathematik | 1999年 / 72卷
关键词
Banach Space; Special Classis; Positive Operator; Banach Lattice; Fredholm Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize properties of Banach spaces by mean ergodicity of operators belonging to special classes. More precisely, we prove: ¶ (i) The Banach lattice E has order continuous norm iff every power-order-bounded regular Fredholm operator is ergodic. (ii) The countably order complete Banach lattice is a KB-space iff every positive operator which possesses a quasi order bounded attractor is mean ergodic. (iii) The Banach space does not contain c0 if every Fredholm operator is ergodic.
引用
收藏
页码:214 / 218
页数:4
相关论文
共 50 条