Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy q

被引:0
|
作者
Song, Ying [1 ,2 ]
Hu, Junjie [1 ]
Wu, Qiang [2 ,3 ]
Xu, Feng [2 ,3 ]
Nie, Shihong [2 ]
Zhao, Yaqin [2 ]
Bai, Sen [2 ]
Yi, Zhang [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, 24,South Sect 1 First Ring Rd, Chengdu 610065, Peoples R China
[2] Sichuan Univ, West China Hosp, Dept Radiotherapy, 37 Guo Xue Alley, Chengdu 610065, Peoples R China
[3] Sichuan Univ, West China Hosp, Lung Canc Ctr, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
AUTO-SEGMENTATION; CONSENSUS GUIDELINES; PELVIC VOLUMES; NORMAL TISSUE; CT IMAGES; ATLAS; VARIABILITY; VALIDATION; HEAD;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页码:186 / 192
页数:7
相关论文
共 50 条
  • [1] Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks
    Tian, Miao
    Wang, Hongqiu
    Liu, Xingang
    Ye, Yuyun
    Ouyang, Ganlu
    Shen, Yali
    Li, Zhiping
    Wang, Xin
    Wu, Shaozhi
    MEDICAL PHYSICS, 2023, 50 (10) : 6354 - 6365
  • [2] Clinical evaluation of the convolutional neural network-based automatic delineation tool in determining the clinical target volume and organs at risk in rectal cancer radiotherapy
    Huang, Yangyang
    Song, Rui
    Qin, Tingting
    Yang, Menglin
    Liu, Zongwen
    ONCOLOGY LETTERS, 2024, 28 (05)
  • [3] Development And Validation Of A Deep Learning Algorithm For Auto-Delineation Of Clinical Target Volume And Organs At Risk In Cervical Cancer Radiotherapy
    Zhikai, L.
    Guan, H.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E766 - E766
  • [4] Development and validation of a deep learning algorithm for auto-delineation of clinical target volume and organs at risk in cervical cancer radiotherapy
    Liu, Zhikai
    Liu, Xia
    Guan, Hui
    Zhen, Hongan
    Sun, Yuliang
    Chen, Qi
    Chen, Yu
    Wang, Shaobin
    Qiu, Jie
    RADIOTHERAPY AND ONCOLOGY, 2020, 153 : 172 - 179
  • [5] Application of deep learning to auto -delineation of target volumes and organs at risk in radiotherapy
    Chen, M.
    Wu, S.
    Zhao, W.
    Zhou, Y.
    Zhou, Y.
    Wang, G.
    CANCER RADIOTHERAPIE, 2022, 26 (03): : 494 - 501
  • [6] Development and Validation of a Deep Learning-Based Auto-Delineation of Target Volume and Organs at Risk in Pancreatic Cancer Radiotherapy
    Ren, G.
    Wang, Y.
    Wang, Y.
    Chen, Y.
    Chen, Q.
    Wang, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E482 - E483
  • [7] Variation in clinical target volume delineation in postoperative radiotherapy for biliary tract cancer
    Koo, Taeryool
    Cheong, Kwang-Ho
    Kim, Kyubo
    Park, Hae Jin
    Park, Younghee
    Koh, Hyeon Kang
    Kim, Byoung Hyuck
    Kim, Eunji
    Kim, Kyung Su
    Choi, Jin Hwa
    PLOS ONE, 2022, 17 (09):
  • [8] Clinical target volume (CTV) automatic delineation using deep learning network for cervical cancer radiotherapy: A study with external validation
    Wu, Zhe
    Wang, Dong
    Xu, Cheng
    Peng, Shengxian
    Deng, Lihua
    Liu, Mujun
    Wu, Yi
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2025, 26 (01):
  • [9] Automatic clinical target volume delineation for cervical cancer in CT images using deep learning
    Shi, Jialin
    Ding, Xiaofeng
    Liu, Xien
    Li, Yan
    Liang, Wei
    Wu, Ji
    MEDICAL PHYSICS, 2021, 48 (07) : 3968 - 3981
  • [10] Automatic Segmentation of Clinical Target Volume and Organs at Risk in Planning CT of Rectal Cancer with Deep Dilated Convolutional Neural Networks
    Men, K.
    Dai, J.
    MEDICAL PHYSICS, 2017, 44 (06) : 3085 - 3085