Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy q

被引:0
|
作者
Song, Ying [1 ,2 ]
Hu, Junjie [1 ]
Wu, Qiang [2 ,3 ]
Xu, Feng [2 ,3 ]
Nie, Shihong [2 ]
Zhao, Yaqin [2 ]
Bai, Sen [2 ]
Yi, Zhang [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, 24,South Sect 1 First Ring Rd, Chengdu 610065, Peoples R China
[2] Sichuan Univ, West China Hosp, Dept Radiotherapy, 37 Guo Xue Alley, Chengdu 610065, Peoples R China
[3] Sichuan Univ, West China Hosp, Lung Canc Ctr, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
AUTO-SEGMENTATION; CONSENSUS GUIDELINES; PELVIC VOLUMES; NORMAL TISSUE; CT IMAGES; ATLAS; VARIABILITY; VALIDATION; HEAD;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页码:186 / 192
页数:7
相关论文
共 50 条
  • [31] GTV Based Automatic Delineation of Clinical Target Volume for Cervical Cancer
    Mao, X.
    Mao, S.
    Lu, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E694 - E694
  • [32] Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning
    Men, Kuo
    Zhang, Tao
    Chen, Xinyuan
    Chen, Bo
    Tang, Yu
    Wang, Shulian
    Li, Yexiong
    Dai, Jianrong
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2018, 50 : 13 - 19
  • [33] Benefits of deep learning for delineation of organs at risk in head and neck cancer
    Van der Veen, J.
    Willems, S.
    Robben, D.
    Crijns, W.
    Maes, F.
    Nuyts, S.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S371 - S371
  • [34] Benefits of deep learning for delineation of organs at risk in head and neck cancer
    van der Veen, J.
    Willems, S.
    Deschuymer, S.
    Robben, D.
    Crijns, W.
    Maes, F.
    Nuyts, S.
    RADIOTHERAPY AND ONCOLOGY, 2019, 138 : 68 - 74
  • [35] Localized fine-tuning and clinical evaluation of deep-learning based auto-segmentation (DLAS) model for clinical target volume (CTV) and organs-at-risk (OAR) in rectal cancer radiotherapy
    Geng, Jianhao
    Sui, Xin
    Du, Rongxu
    Feng, Jialin
    Wang, Ruoxi
    Wang, Meijiao
    Yao, Kaining
    Chen, Qi
    Bai, Lu
    Wang, Shaobin
    Li, Yongheng
    Wu, Hao
    Hu, Xiangmin
    Du, Yi
    RADIATION ONCOLOGY, 2024, 19 (01)
  • [36] Advances in automatic delineation of target volume and cardiac substructure in breast cancer radiotherapy (Review)
    Shen, Jingjing
    Gu, Peihua
    Wang, Yun
    Wang, Zhongming
    ONCOLOGY LETTERS, 2023, 25 (03)
  • [37] Development and validation of a deep reinforcement learning algorithm for auto-delineation of organs at risk in cervical cancer radiotherapy
    Li, Yucheng
    Qiu, Lingyun
    Shao, Kainan
    Jia, Yongshi
    Zhan, Wenming
    Ding, Jieni
    Chen, Weijun
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [38] Radiotherapy for cervix carcinomas: Clinical target volume delineation
    Gnep, K.
    Mazeron, R.
    CANCER RADIOTHERAPIE, 2013, 17 (5-6): : 486 - 492
  • [39] PET imaging for target volume delineation in rectal cancer radiotherapy: results of a phase II study
    Floreno, B.
    Rinaldi, C.
    Fiore, M.
    Trecca, P.
    Greco, C.
    Iurato, A.
    D'Angelillo, R. M.
    Trodella, L.
    Ramella, S.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S813 - S813
  • [40] Postoperative Radiotherapy for Glioma: Improved Delineation of the Clinical Target Volume Using the Geodesic Distance Calculation
    Yan, DanFang
    Yan, SenXiang
    Lu, ZhongJie
    Xie, Cong
    Chen, Wei
    Xu, Xing
    Li, Xinke
    Yu, Haogang
    Zhu, Xinli
    Zheng, LingYan
    PLOS ONE, 2014, 9 (06):