Lagrangian noether symmetries as canonical transformations

被引:6
|
作者
García, JA
Pons, JM
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[2] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Catalonia, Spain
[3] Inst Fis Altes Energies, E-08028 Barcelona, Catalonia, Spain
来源
关键词
D O I
10.1142/S0217751X01005122
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We prove that, given a time-independent Lagrangian defined in the first tangent bundle of configuration space, every infinitesimal Noether symmetry that is defined in the n-tangent bundle and is not vanishing on-shell, can be written as a canonical symmetry in an enlarged phase space, up to constraints that vanish on-shell. The proof is performed by the implementation of a change of variables from the n-tangent bundle of the Lagrangian theory to an extension of the Hamiltonian formalism which is particularly suited for the case when the Lagrangian is singular. This result proves the assertion that any Noether symmetry can be canonically realized in an enlarged phase spare. Then we work out the regular case as a particular application of this ideas and rederive the Noether identities in this framework. Finally we present an example to illustrate our results.
引用
收藏
页码:3897 / 3914
页数:18
相关论文
共 50 条
  • [41] Approximate Noether symmetries
    Govinder, KS
    Heil, TG
    Uzer, T
    PHYSICS LETTERS A, 1998, 240 (03) : 127 - 131
  • [42] Noether symmetries and isometries of the area-minimizing Lagrangian on vacuum classes of pp-waves
    Mohammadpouri, Akram
    Hashemi, Mir Sajjad
    Samaei, Sona
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (02):
  • [43] Noether symmetries and isometries of the area-minimizing Lagrangian on vacuum classes of pp-waves
    Akram Mohammadpouri
    Mir Sajjad Hashemi
    Sona Samaei
    The European Physical Journal Plus, 138
  • [44] THE SYMMETRY TRANSFORMATIONS AND NOETHER TRANSFORMATIONS
    MAKSIMOV, BI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1982, 25 (04): : 124 - 125
  • [46] Physical Significance of Noether Symmetries
    Qadir, Asghar
    Camci, Ugur
    SYMMETRY-BASEL, 2022, 14 (03):
  • [47] Noether symmetries in the phase space
    Diaz, Bogar
    Galindo-Linares, Elizabeth
    Ramirez-Romero, Cupatitzio
    Silva-Ortigoza, Gilberto
    Suarez-Xique, Roman
    Torres del Castillo, Gerardo F.
    Velazquez, Mercedes
    AIP ADVANCES, 2014, 4 (09):
  • [48] Noether Symmetries and Critical Exponents
    Bozhkov, Yuri
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2005, 1
  • [49] Quantizing preserving Noether symmetries
    Nucci, M. C.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (03) : 451 - 463
  • [50] Noether symmetry in Horndeski Lagrangian
    Momeni, D.
    Myrzakulov, R.
    CANADIAN JOURNAL OF PHYSICS, 2016, 94 (08) : 763 - 767