Lagrangian noether symmetries as canonical transformations

被引:6
|
作者
García, JA
Pons, JM
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[2] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Catalonia, Spain
[3] Inst Fis Altes Energies, E-08028 Barcelona, Catalonia, Spain
来源
关键词
D O I
10.1142/S0217751X01005122
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We prove that, given a time-independent Lagrangian defined in the first tangent bundle of configuration space, every infinitesimal Noether symmetry that is defined in the n-tangent bundle and is not vanishing on-shell, can be written as a canonical symmetry in an enlarged phase space, up to constraints that vanish on-shell. The proof is performed by the implementation of a change of variables from the n-tangent bundle of the Lagrangian theory to an extension of the Hamiltonian formalism which is particularly suited for the case when the Lagrangian is singular. This result proves the assertion that any Noether symmetry can be canonically realized in an enlarged phase spare. Then we work out the regular case as a particular application of this ideas and rederive the Noether identities in this framework. Finally we present an example to illustrate our results.
引用
收藏
页码:3897 / 3914
页数:18
相关论文
共 50 条
  • [31] The Quantal Canonical Symmetries for a Singular Lagrangian System with Subsidiary Constraints
    Ziping Li
    Jinhuan Jiang
    International Journal of Theoretical Physics, 2010, 49 : 564 - 574
  • [32] Lie symmetries and non-Noether conserved quantities for Hamiltonian canonical equations
    Fu, JL
    Chen, LQ
    Xie, FP
    CHINESE PHYSICS, 2004, 13 (10): : 1611 - 1614
  • [33] SOME REMARKS ON THE GENERALIZED NOETHER THEORY OF POINT SYMMETRY TRANSFORMATIONS OF THE LAGRANGIAN
    KRAUSE, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04): : 991 - 1007
  • [34] Noether Currents and Generators of Local Gauge Transformations in the Covariant Canonical Formalism
    Nakajima, Satoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2023, 92 (08)
  • [35] Noether symmetries and isometries of the minimal surface Lagrangian under constant volume in a Riemannian space
    Tsamparlis, Michael
    Paliathanasis, Andronikos
    Qadir, Asghar
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (01)
  • [36] MOTION EQUATIONS AND NON-NOETHER SYMMETRIES OF LAGRANGIAN SYSTEMS WITH CONFORMABLE FRACTIONAL DERIVATIVE
    Fu, Jing-Li
    Zhang, Lijun
    Khalique, Chaudry
    Guo, Ma-Li
    THERMAL SCIENCE, 2021, 25 (02): : 1365 - 1372
  • [37] DYNAMICAL NOETHER SYMMETRIES
    KALOTAS, TM
    WYBOURNE, BG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (07): : 2077 - 2083
  • [38] Approximate Noether symmetries
    Govinder, K. S.
    Heil, T. G.
    Uzer, T.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 240 (03):
  • [39] Approximate Noether symmetries
    Govinder, K.S.
    Heil, T.G.
    Uzer, T.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 240 (03): : 127 - 131
  • [40] Noether theorem for μ-symmetries
    Cicogna, Giampaolo
    Gaeta, Giuseppe
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (39) : 11899 - 11921