Model-Independent Online Learning for Influence Maximization

被引:0
|
作者
Vaswani, Sharan [1 ]
Kveton, Branislav [2 ]
Wen, Zheng [2 ]
Ghavamzadeh, Mohammad [2 ,3 ]
Lakshmanan, Laks V. S. [1 ]
Schmidt, Mark [1 ]
机构
[1] Univ British Columbia, Vancouver, BC, Canada
[2] Adobe Res, San Francisco, CA USA
[3] DeepMind, London, England
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider influence maximization (IM) in social networks, which is the problem of maximizing the number of users that become aware of a product by selecting a set of "seed" users to expose the product to. While prior work assumes a known model of information diffusion, we propose a novel parametrization that not only makes our framework agnostic to the underlying diffusion model, but also statistically efficient to learn from data. We give a corresponding monotone, submodular surrogate function, and show that it is a good approximation to the original IM objective. We also consider the case of a new marketer looking to exploit an existing social network, while simultaneously learning the factors governing information propagation. For this, we propose a pairwise-influence semi-bandit feedback model and develop a LinUCB-based bandit algorithm. Our model-independent analysis shows that our regret bound has a better (as compared to previous work) dependence on the size of the network. Experimental evaluation suggests that our framework is robust to the underlying diffusion model and can efficiently learn a near-optimal solution.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Model-independent bounds on R(J/ψ)
    Thomas D. Cohen
    Henry Lamm
    Richard F. Lebed
    Journal of High Energy Physics, 2018
  • [42] Model-independent schema and data translation
    Atzeni, Paolo
    Cappellari, Paolo
    Bernstein, Philip A.
    ADVANCES IN DATABASE TECHNOLOGY - EDBT 2006, 2006, 3896 : 368 - 385
  • [43] Model-independent analysis of the DAMPE excess
    Athron, Peter
    Balazs, Csaba
    Fowlie, Andrew
    Zhang, Yang
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02):
  • [44] Model-independent Exoplanet Transit Spectroscopy
    Aronson, Erik
    Piskunov, Nikolai
    ASTRONOMICAL JOURNAL, 2018, 155 (05):
  • [45] A Reinforcement Learning Model for Influence Maximization in Social Networks
    Wang, Chao
    Liu, Yiming
    Gao, Xiaofeng
    Chen, Guihai
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT II, 2021, 12682 : 701 - 709
  • [46] Model-independent constraints on spin observables
    Jean-Marc Richard
    Xavier Artru
    Mokhtar Elchikh
    Jacques Soffer
    Oleg Teryaev
    中国物理C, 2009, (12) : 1153 - 1158
  • [47] Model-independent reionization observables in the CMB
    Hu, W
    Holder, GP
    PHYSICAL REVIEW D, 2003, 68 (02)
  • [48] Model-independent constraints on spin observables
    Richard, Jean-Marc
    Artru, Xavier
    Elchikh, Mokhtar
    Soffer, Jacques
    Teryaev, Oleg
    CHINESE PHYSICS C, 2009, 33 (12) : 1153 - 1158
  • [49] Model-independent method for fMRI analysis
    Soltanian-Zadeh, H
    Peck, DJ
    Hearshen, DO
    Lajiness-O'Neill, RR
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (03) : 285 - 296
  • [50] Model-independent quantum phases classifier
    Mahlow, F.
    Luiz, F. S.
    Malvezzi, A. L.
    Fanchini, F. F.
    SCIENTIFIC REPORTS, 2023, 13 (01)