Model-Independent Online Learning for Influence Maximization

被引:0
|
作者
Vaswani, Sharan [1 ]
Kveton, Branislav [2 ]
Wen, Zheng [2 ]
Ghavamzadeh, Mohammad [2 ,3 ]
Lakshmanan, Laks V. S. [1 ]
Schmidt, Mark [1 ]
机构
[1] Univ British Columbia, Vancouver, BC, Canada
[2] Adobe Res, San Francisco, CA USA
[3] DeepMind, London, England
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider influence maximization (IM) in social networks, which is the problem of maximizing the number of users that become aware of a product by selecting a set of "seed" users to expose the product to. While prior work assumes a known model of information diffusion, we propose a novel parametrization that not only makes our framework agnostic to the underlying diffusion model, but also statistically efficient to learn from data. We give a corresponding monotone, submodular surrogate function, and show that it is a good approximation to the original IM objective. We also consider the case of a new marketer looking to exploit an existing social network, while simultaneously learning the factors governing information propagation. For this, we propose a pairwise-influence semi-bandit feedback model and develop a LinUCB-based bandit algorithm. Our model-independent analysis shows that our regret bound has a better (as compared to previous work) dependence on the size of the network. Experimental evaluation suggests that our framework is robust to the underlying diffusion model and can efficiently learn a near-optimal solution.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Gravity wave and model-independent axion
    Jihn E. Kim
    Journal of the Korean Physical Society, 2017, 71 : 127 - 129
  • [32] Model-independent periodogram for scanning astrometry
    Binnenfeld, A.
    Shahaf, S.
    Zucker, S.
    ASTRONOMY & ASTROPHYSICS, 2023, 675
  • [33] Model-independent analysis of B → πℓ+ℓ− decays
    A. Ali
    A. Ya. Parkhomenko
    A. V. Rusov
    Physics of Atomic Nuclei, 2015, 78 : 436 - 439
  • [34] Gravity wave and model-independent axion
    Kim, Jihn E.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 71 (03) : 127 - 129
  • [35] Model-independent bounds on a light Higgs
    Azatov, Aleksandr
    Contino, Roberto
    Galloway, Jamison
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (04):
  • [36] Model-independent bounds on a light Higgs
    Aleksandr Azatov
    Roberto Contino
    Jamison Galloway
    Journal of High Energy Physics, 2012
  • [37] The LIX: A model-independent liquidity index
    Guillaume, F.
    JOURNAL OF BANKING & FINANCE, 2015, 58 : 214 - 231
  • [38] Model-independent comparison of simulation output
    Fachada, Nuno
    Lopes, Vitor V.
    Martins, Rui C.
    Rosa, Agostinho C.
    SIMULATION MODELLING PRACTICE AND THEORY, 2017, 72 : 131 - 149
  • [39] Model-independent analysis of τ → lll′ decays
    Turczyk, Sascha
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2009, 189 : 140 - 145
  • [40] A model-independent photometric redshift estimator
    Wang, Y
    Bahcall, N
    Turner, EL
    PHOTOMETRIC REDSHIFTS AND HIGH REDSHIFT GALAXIES, 1999, 191 : 25 - 30