We consider influence maximization (IM) in social networks, which is the problem of maximizing the number of users that become aware of a product by selecting a set of "seed" users to expose the product to. While prior work assumes a known model of information diffusion, we propose a novel parametrization that not only makes our framework agnostic to the underlying diffusion model, but also statistically efficient to learn from data. We give a corresponding monotone, submodular surrogate function, and show that it is a good approximation to the original IM objective. We also consider the case of a new marketer looking to exploit an existing social network, while simultaneously learning the factors governing information propagation. For this, we propose a pairwise-influence semi-bandit feedback model and develop a LinUCB-based bandit algorithm. Our model-independent analysis shows that our regret bound has a better (as compared to previous work) dependence on the size of the network. Experimental evaluation suggests that our framework is robust to the underlying diffusion model and can efficiently learn a near-optimal solution.
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Porter Sch Environm & Earth Sci, IL-6997801 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Porter Sch Environm & Earth Sci, IL-6997801 Tel Aviv, Israel
Binnenfeld, A.
论文数: 引用数:
h-index:
机构:
Shahaf, S.
Zucker, S.
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Porter Sch Environm & Earth Sci, IL-6997801 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Porter Sch Environm & Earth Sci, IL-6997801 Tel Aviv, Israel
机构:
Ctr Axion & Precis Phys Res CAPP, IBS, Daejeon 34141, South Korea
Kyung Hee Univ, Dept Phys, Seoul 02447, South Korea
Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South KoreaCtr Axion & Precis Phys Res CAPP, IBS, Daejeon 34141, South Korea
机构:
Inst Super Tecn, Inst Syst & Robot, LARSyS, Av Rovisco Pais 1, P-1049001 Lisbon, PortugalInst Super Tecn, Inst Syst & Robot, LARSyS, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Fachada, Nuno
Lopes, Vitor V.
论文数: 0引用数: 0
h-index: 0
机构:
UTEC Univ Ingn & Tecnol, Jr Medrano Silva 165, Lima, Peru
Univ Lisbon, CMAF CIO, Fac Ciencias, P-1749016 Lisbon, PortugalInst Super Tecn, Inst Syst & Robot, LARSyS, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Lopes, Vitor V.
Martins, Rui C.
论文数: 0引用数: 0
h-index: 0
机构:
INESC TEC, Campus FEUP,Rua Dr Roberto Frias, P-4200465 Porto, PortugalInst Super Tecn, Inst Syst & Robot, LARSyS, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
Martins, Rui C.
Rosa, Agostinho C.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Super Tecn, Inst Syst & Robot, LARSyS, Av Rovisco Pais 1, P-1049001 Lisbon, PortugalInst Super Tecn, Inst Syst & Robot, LARSyS, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal