Hyperspectral image classification via contextual deep learning

被引:124
|
作者
Ma, Xiaorui [1 ]
Geng, Jie [1 ]
Wang, Hongyu [1 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian, Peoples R China
关键词
Hyperspectral image classification; Contextual deep learning; Multinomial logistic regression (MLR); Supervised classification; SPECTRAL-SPATIAL CLASSIFICATION; REPRESENTATIONS; FRAMEWORK;
D O I
10.1186/s13640-015-0071-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Because the reliability of feature for every pixel determines the accuracy of classification, it is important to design a specialized feature mining algorithm for hyperspectral image classification. We propose a feature learning algorithm, contextual deep learning, which is extremely effective for hyperspectral image classification. On the one hand, the learning-based feature extraction algorithm can characterize information better than the pre-defined feature extraction algorithm. On the other hand, spatial contextual information is effective for hyperspectral image classification. Contextual deep learning explicitly learns spectral and spatial features via a deep learning architecture and promotes the feature extractor using a supervised fine-tune strategy. Extensive experiments show that the proposed contextual deep learning algorithm is an excellent feature learning algorithm and can achieve good performance with only a simple classifier.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] On OCT Image Classification via Deep Learning
    Wang, Depeng
    Wang, Liejun
    IEEE PHOTONICS JOURNAL, 2019, 11 (05):
  • [42] TRAINING CAPSNETS VIA ACTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Paoletti, Mercedes E.
    Haut, Juan M.
    Plaza, Javier
    Plaza, Antonio
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 40 - 43
  • [43] Semisupervised Hyperspectral Image Classification via Neighborhood Graph Learning
    Im, Daniel Jiwoong
    Taylor, Graham W.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (09) : 1913 - 1917
  • [44] SMALE: Hyperspectral Image Classification via Superpixels and Manifold Learning
    Liao, Nannan
    Gong, Jianglei
    Li, Wenxing
    Li, Cheng
    Zhang, Chaoyan
    Guo, Baolong
    REMOTE SENSING, 2024, 16 (18)
  • [45] Active-Learning-Incorporated Deep Transfer Learning for Hyperspectral Image Classification
    Lin, Jianzhe
    Zhao, Liang
    Li, Shuying
    Ward, Rabab
    Wang, Z. Jane
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (11) : 4048 - 4062
  • [46] Going Deeper With Contextual CNN for Hyperspectral Image Classification
    Lee, Hyungtae
    Kwon, Heesung
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (10) : 4843 - 4855
  • [47] Classification of Hyperspectral Image Based on Principal Component Analysis and Deep Learning
    Sun, Qiaoqiao
    Liu, Xuefeng
    Fu, Min
    PROCEEDINGS OF 2017 IEEE 7TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC), 2017, : 356 - 359
  • [48] HYPER-VOXEL BASED DEEP LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Mughees, Atif
    Tao, Linmi
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 840 - 844
  • [49] Deep transformer and few-shot learning for hyperspectral image classification
    Ran, Qiong
    Zhou, Yonghao
    Hong, Danfeng
    Bi, Meiqiao
    Ni, Li
    Li, Xuan
    Ahmad, Muhammad
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1323 - 1336
  • [50] HYPERSPECTRAL IMAGE CLASSIFICATION USING RANDOM FOREST AND DEEP LEARNING ALGORITHMS
    Rissati, J., V
    Molina, P. C.
    Anjos, C. S.
    2020 IEEE LATIN AMERICAN GRSS & ISPRS REMOTE SENSING CONFERENCE (LAGIRS), 2020, : 132 - 132