Hyperspectral image classification via contextual deep learning

被引:124
|
作者
Ma, Xiaorui [1 ]
Geng, Jie [1 ]
Wang, Hongyu [1 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian, Peoples R China
关键词
Hyperspectral image classification; Contextual deep learning; Multinomial logistic regression (MLR); Supervised classification; SPECTRAL-SPATIAL CLASSIFICATION; REPRESENTATIONS; FRAMEWORK;
D O I
10.1186/s13640-015-0071-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Because the reliability of feature for every pixel determines the accuracy of classification, it is important to design a specialized feature mining algorithm for hyperspectral image classification. We propose a feature learning algorithm, contextual deep learning, which is extremely effective for hyperspectral image classification. On the one hand, the learning-based feature extraction algorithm can characterize information better than the pre-defined feature extraction algorithm. On the other hand, spatial contextual information is effective for hyperspectral image classification. Contextual deep learning explicitly learns spectral and spatial features via a deep learning architecture and promotes the feature extractor using a supervised fine-tune strategy. Extensive experiments show that the proposed contextual deep learning algorithm is an excellent feature learning algorithm and can achieve good performance with only a simple classifier.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Semi-supervised deep learning for hyperspectral image classification
    Kang, Xudong
    Zhuo, Binbin
    Duan, Puhong
    REMOTE SENSING LETTERS, 2019, 10 (04) : 353 - 362
  • [32] Deep Few-Shot Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Xuchu
    Yu, Anzhu
    Zhang, Pengqiang
    Wan, Gang
    Wang, Ruirui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2290 - 2304
  • [33] Combining Unmixing and Deep Feature Learning for Hyperspectral Image Classification
    Alam, Fahim Irfan
    Zhou, Jun
    Tong, Lei
    Liew, Alan Wee-Chung
    Gao, Yongsheng
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 733 - 740
  • [34] Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification
    Zhong, Ping
    Gong, Zhiqiang
    Li, Shutao
    Schoenlieb, Carola-Bibiane
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (06): : 3516 - 3530
  • [35] A Higly Configurable Deep Learning Architecture for Hyperspectral Image Classification
    Diaconescu, Paul
    Neagoe, Victor-Emil
    IEEE 13TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2019), 2019, : 197 - 200
  • [36] Deep Residual Prototype Learning Network for Hyperspectral Image Classification
    Liu, Yu
    Su, Mingrui
    Liu, Lu
    Li, Chunchao
    Peng, Yuanxi
    Hou, Jing
    Jiang, Tian
    SECOND TARGET RECOGNITION AND ARTIFICIAL INTELLIGENCE SUMMIT FORUM, 2020, 11427
  • [37] Efficient Deep Learning of Nonlocal Features for Hyperspectral Image Classification
    Shen, Yu
    Zhu, Sijie
    Chen, Chen
    Du, Qian
    Xiao, Liang
    Chen, Jianyu
    Pan, Delu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07): : 6029 - 6043
  • [38] Multitask Deep Learning With Spectral Knowledge for Hyperspectral Image Classification
    Liu, Shengjie
    Shi, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (12) : 2110 - 2114
  • [39] Hyperspectral image classification via active learning and broad learning system
    Huang, Huifang
    Liu, Zhi
    Chen, C. L. Philip
    Zhang, Yun
    APPLIED INTELLIGENCE, 2023, 53 (12) : 15683 - 15694
  • [40] Hyperspectral image classification via active learning and broad learning system
    Huifang Huang
    Zhi Liu
    C. L. Philip Chen
    Yun Zhang
    Applied Intelligence, 2023, 53 : 15683 - 15694