On multilinear Beckner systems

被引:0
|
作者
Pezzolo, Fabio [1 ]
机构
[1] Univ Trieste, Dipartimento Matemat & Geosci, Via Alfonso Valerio 12-1, I-34127 Trieste, Italy
关键词
Liouville theorems; Beckner inequality; Multilinear fractional integral equations; HLS type integral equations; Hardy-Littlewood-Sobolev inequality; Lane-Emden system; HARDY-LITTLEWOOD-SOBOLEV; LIOUVILLE-TYPE; EQUATIONS; CRITERIA;
D O I
10.1016/j.jmaa.2022.126446
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the multilinear system of integral equations and inequalities associated to the k-fold Beckner inequality on R-N . We prove some Liouville theorems, where no conditions on symmetry or energy of solutions are assumed. Moreover, in the particular case k = 3 some existence results are obtained. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Approaches to Parameter Identification for Hybrid Multilinear Time Invariant Systems
    Sridharan, Aadithyan
    Lichtenberg, Gerwald
    Correcher Salvador, Antonio
    Vargas Salgado, Carlos
    SIMULTECH: PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON SIMULATION AND MODELING METHODOLOGIES, TECHNOLOGIES AND APPLICATIONS, 2020, : 255 - 262
  • [42] A Globally and Quadratically Convergent Algorithm for Solving Multilinear Systems with -tensors
    He, Hongjin
    Ling, Chen
    Qi, Liqun
    Zhou, Guanglu
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (03) : 1718 - 1741
  • [43] A homotopy method for solving multilinear systems with M-tensors
    Han, Lixing
    APPLIED MATHEMATICS LETTERS, 2017, 69 : 49 - 54
  • [44] Weighted Moser–Onofri–Beckner and Logarithmic Sobolev Inequalities
    Nguyen Lam
    Guozhen Lu
    The Journal of Geometric Analysis, 2018, 28 : 1687 - 1715
  • [45] Back from the brink - The Greenspan years - Beckner,SK
    Schwartz, AJ
    TLS-THE TIMES LITERARY SUPPLEMENT, 1997, (4930): : 12 - 12
  • [46] IMPROVING BECKNER'S BOUND VIA HERMITE FUNCTIONS
    Ivanisvili, Paata
    Volberg, Alexander
    ANALYSIS & PDE, 2017, 10 (04): : 929 - 942
  • [47] Improved Beckner-Sobolev Inequalities on Kahler Manifolds
    Baudoin, Fabrice
    Munteanu, Ovidiu
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 100 - 125
  • [48] From multilinear SVD to multilinear UTV decomposition
    Vandecappelle, Michiel
    De Lathauwer, Lieven
    SIGNAL PROCESSING, 2022, 198
  • [49] Beckner inequality on finite- and infinite-dimensional manifolds
    Deng, Pingji
    Wang, Fengyu
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (05) : 581 - 594
  • [50] Beckner Inequality on Finite- and Infinite-Dimensional Manifolds*
    Pingji Deng
    Fengyu Wang
    Chinese Annals of Mathematics, Series B, 2006, 27 : 581 - 594