From multilinear SVD to multilinear UTV decomposition

被引:2
|
作者
Vandecappelle, Michiel [1 ,2 ]
De Lathauwer, Lieven [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT STADIUS, Kasteelpk Arenberg 10, Bus 2446, B-3001 Leuven, Belgium
[2] KU Leuven Kulak, Grp Sci Engn & Technol, E Sabbelaan 53, B-8500 Kortrijk, Belgium
关键词
Tensor; Multilinear SVD; Subspace analysis; ven; ai); ALGORITHMS;
D O I
10.1016/j.sigpro.2022.108575
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Across a range of applications, low multilinear rank approximation (LMLRA) is used to compress large tensors into a more compact form, while preserving most of their information. A specific instance of LMLRA is the multilinear singular value decomposition (MLSVD), which can be used for multilinear principal component analysis (MLPCA). MLSVDs are obtained by computing SVDs of all tensor unfoldings, but, in practical applications, it is often not necessary to compute full SVDs. In this article, we therefore propose a new decomposition, called the truncated multilinear UTV decomposition (TMLUTVD). This is a tensor decomposition that is also multilinear rank-revealing, yet less expensive to compute than a truncated ML SVD (TML SVD); it can even be computed in a finite number of steps. We present its properties in an algorithm-independent manner. In particular, we derive bounds on the accuracy in function of the truncation level. Experiments illustrate the good performance in practice. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Updating the Multilinear UTV Decomposition
    Vandecappelle, Michiel
    De Lathauwer, Lieven
    IEEE Transactions on Signal Processing, 2022, 70 : 3551 - 3565
  • [2] Updating the Multilinear UTV Decomposition
    Vandecappelle, Michiel
    De Lathauwer, Lieven
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 3551 - 3565
  • [3] Randomized Algorithms for Multilinear UTV Decomposition
    Liu, Guimin
    Zhao, Ruijuan
    Zheng, Bing
    Yang, Fanyin
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2025, 32 (01)
  • [4] Adaptive multilinear SVD for structured tensors
    Boyer, Remy
    Badeau, Roland
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 3331 - 3334
  • [5] A multilinear singular value decomposition
    De Lathauwer, L
    De Moor, B
    Vandewalle, J
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1253 - 1278
  • [6] Efficient implementation of Volterra systems using a multilinear SVD
    Seagraves, Ernest
    Walcott, Bruce
    Feinauer, David
    2007 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, VOLS 1 AND 2, 2007, : 786 - +
  • [7] Weighted Reductive Multilinear Array Decomposition
    Divanyan, Letisya
    Demiralp, Metin
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [8] Low Rank Tensor STAP filter based on multilinear SVD
    Boizard, Maxime
    Ginolhac, Guillaume
    Pascal, Frederic
    Forster, Philippe
    2012 IEEE 7TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2012, : 305 - 308
  • [9] Spectral Clustering Using Multilinear SVD: Analysis, Approximations and Applications
    Ghoshdastidar, Debarghya
    Dukkipati, Ambedkar
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 2610 - 2616
  • [10] Robust Multilinear Decomposition of Low Rank Tensors
    Han, Xu
    Albera, Laurent
    Kachenoura, Amar
    Shu, Huazhong
    Senhadji, Lotfi
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2018), 2018, 10891 : 3 - 12