Belief state separated reinforcement learning for autonomous vehicle decision making under uncertainty

被引:2
|
作者
Gu, Ziqing [1 ]
Yang, Yujie [1 ]
Duan, Jingliang [1 ]
Li, Shengbo Eben [1 ]
Chen, Jianyu [2 ]
Cao, Wenhan [1 ]
Zheng, Sifa [1 ]
机构
[1] Tsinghua Univ, Sch Vehicle & Mobil, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Inst Interdiscriplinary Informat Sci, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
autonomous vehicle; Markov decision process; uncertain environment; partially observable;
D O I
10.1109/ITSC48978.2021.9564576
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In autonomous driving, the ego vehicle and its surrounding traffic environments always have uncertainties like parameter and structural errors, behavior randomness of road users, etc. Furthermore, environmental sensors are noisy or even biased. This problem can be formulated as a partially observable Markov decision process. Existing methods lack a good representation of historical information, making it very challenging to find an optimal policy. This paper proposes a belief state separated reinforcement learning (RL) algorithm for decision-making of autonomous driving in uncertain environments. We extend the separation principle from linear Gaussian systems to general nonlinear stochastic environments, where the belief state, defined as the posterior distribution of the true state, is found to be a sufficient statistic of historical information. This belief state is estimated by action-enhanced variational inference from historical information and is proved to satisfy the Markovian property, thus allowing us to obtain the optimal policy using traditional RL algorithms for Markov decision processes. The policy gradient of a task-specific prior model is mixed with that of the interaction data to improve learning performance. The proposed algorithm is evaluated in a multi-lane autonomous driving task, where the surrounding vehicles are subject to behavior uncertainty and observation noise. The simulation results show that compared with existing RL algorithms, the proposed method can achieve a higher average return with better driving performance.
引用
收藏
页码:586 / 592
页数:7
相关论文
共 50 条
  • [41] Reinforcement Learning Decision-Making for Autonomous Vehicles Based on Semantic Segmentation
    Gao, Jianping
    Liu, Ningbo
    Li, Haotian
    Li, Zhe
    Xie, Chengwei
    Gou, Yangyang
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [42] Deep Reinforcement Learning Enabled Decision-Making for Autonomous Driving at Intersections
    Li, Guofa
    Li, Shenglong
    Li, Shen
    Qin, Yechen
    Cao, Dongpu
    Qu, Xingda
    Cheng, Bo
    AUTOMOTIVE INNOVATION, 2020, 3 (04) : 374 - 385
  • [43] Research on Autonomous Decision-Making of UCAV Based on Deep Reinforcement Learning
    Wang, Linxiang
    Wei, Hongtao
    2022 3RD INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE (ICTC 2022), 2022, : 122 - 126
  • [44] Human-Like Decision Making and Planning for Autonomous Driving with Reinforcement Learning
    Zong, Ziqi
    Shi, Jiamin
    Wang, Runsheng
    Chen, Shitao
    Zheng, Nanning
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 3922 - 3929
  • [45] Deep Reinforcement Learning Enabled Decision-Making for Autonomous Driving at Intersections
    Guofa Li
    Shenglong Li
    Shen Li
    Yechen Qin
    Dongpu Cao
    Xingda Qu
    Bo Cheng
    Automotive Innovation, 2020, 3 : 374 - 385
  • [46] Autonomous driving planning and decision making based on game theory and reinforcement learning
    Duan, Weiping
    Tang, Zhongyi
    Liu, Wei
    Zhou, Hongbiao
    EXPERT SYSTEMS, 2023, 40 (05)
  • [47] Review of Autonomous Driving Decision-Making Research Based on Reinforcement Learning
    Jin L.
    Han G.
    Xie X.
    Guo B.
    Liu G.
    Zhu W.
    Qiche Gongcheng/Automotive Engineering, 2023, 45 (04): : 527 - 540
  • [48] Switching Deep Reinforcement Learning based Intelligent Online Decision Making for Autonomous Systems under Uncertain Environment
    Zhou, Zejian
    Xu, Hao
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1453 - 1460
  • [49] Decision making under uncertainty in energy systems: State of the art
    Soroudi, Alireza
    Amraee, Turaj
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 28 : 376 - 384
  • [50] Learning and Reasoning for Robot Sequential Decision Making under Uncertainty
    Amiri, Saeid
    Shirazi, Mohammad Shokrolah
    Zhang, Shiqi
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 2726 - 2733