Belief state separated reinforcement learning for autonomous vehicle decision making under uncertainty

被引:2
|
作者
Gu, Ziqing [1 ]
Yang, Yujie [1 ]
Duan, Jingliang [1 ]
Li, Shengbo Eben [1 ]
Chen, Jianyu [2 ]
Cao, Wenhan [1 ]
Zheng, Sifa [1 ]
机构
[1] Tsinghua Univ, Sch Vehicle & Mobil, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Inst Interdiscriplinary Informat Sci, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
autonomous vehicle; Markov decision process; uncertain environment; partially observable;
D O I
10.1109/ITSC48978.2021.9564576
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In autonomous driving, the ego vehicle and its surrounding traffic environments always have uncertainties like parameter and structural errors, behavior randomness of road users, etc. Furthermore, environmental sensors are noisy or even biased. This problem can be formulated as a partially observable Markov decision process. Existing methods lack a good representation of historical information, making it very challenging to find an optimal policy. This paper proposes a belief state separated reinforcement learning (RL) algorithm for decision-making of autonomous driving in uncertain environments. We extend the separation principle from linear Gaussian systems to general nonlinear stochastic environments, where the belief state, defined as the posterior distribution of the true state, is found to be a sufficient statistic of historical information. This belief state is estimated by action-enhanced variational inference from historical information and is proved to satisfy the Markovian property, thus allowing us to obtain the optimal policy using traditional RL algorithms for Markov decision processes. The policy gradient of a task-specific prior model is mixed with that of the interaction data to improve learning performance. The proposed algorithm is evaluated in a multi-lane autonomous driving task, where the surrounding vehicles are subject to behavior uncertainty and observation noise. The simulation results show that compared with existing RL algorithms, the proposed method can achieve a higher average return with better driving performance.
引用
收藏
页码:586 / 592
页数:7
相关论文
共 50 条
  • [31] A DECISION-MAKING METHOD FOR AUTONOMOUS VEHICLES BASED ON SIMULATION AND REINFORCEMENT LEARNING
    Zheng, Rui
    Liu, Chunming
    Guo, Qi
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 362 - 369
  • [32] Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning of Intelligent Vehicles
    Lu, Yang
    Xu, Xin
    Zhang, Xinglong
    Qian, Lilin
    Zhou, Xing
    IEEE ACCESS, 2020, 8 : 209776 - 209789
  • [33] Combining Planning and Deep Reinforcement Learning in Tactical Decision Making for Autonomous Driving
    Hoel, Carl-Johan
    Driggs-Campbell, Katherine
    Wolff, Krister
    Laine, Leo
    Kochenderfer, Mykel J.
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2020, 5 (02): : 294 - 305
  • [34] Constraints Driven Safe Reinforcement Learning for Autonomous Driving Decision-Making
    Gao, Fei
    Wang, Xiaodong
    Fan, Yuze
    Gao, Zhenhai
    Zhao, Rui
    IEEE ACCESS, 2024, 12 : 128007 - 128023
  • [35] Decision Making for Autonomous Driving via Augmented Adversarial Inverse Reinforcement Learning
    Wang, Pin
    Liu, Dapeng
    Chen, Jiayu
    Li, Hanhan
    Chan, Ching-Yao
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 1036 - 1042
  • [36] Deploying Reinforcement Learning for Efficient Runtime Decision-Making in Autonomous Systems
    Dastranj, Melika
    Nia, Mehran Alidoost
    Kargahi, Mehdi
    2022 CPSSI 4TH INTERNATIONAL SYMPOSIUM ON REAL-TIME AND EMBEDDED SYSTEMS AND TECHNOLOGIES (RTEST 2022), 2022,
  • [37] Intelligent Decision Making in Autonomous Vehicles using Cognition Aided Reinforcement Learning
    Rathore, Heena
    Bhadauria, Vikram
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 524 - 529
  • [38] A reinforcement learning approach to autonomous decision-making in smart electricity markets
    Markus Peters
    Wolfgang Ketter
    Maytal Saar-Tsechansky
    John Collins
    Machine Learning, 2013, 92 : 5 - 39
  • [39] Reinforcement Learning Based Overtaking Decision-Making for Highway Autonomous Driving
    Li, Xin
    Xu, Xin
    Zuo, Lei
    2015 SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2015, : 336 - 342
  • [40] A reinforcement learning approach to autonomous decision-making in smart electricity markets
    Peters, Markus
    Ketter, Wolfgang
    Saar-Tsechansky, Maytal
    Collins, John
    MACHINE LEARNING, 2013, 92 (01) : 5 - 39