Superconvergence of FEM for Distributed Order Time Fractional Variable Coefficient Diffusion Equations

被引:1
|
作者
Yang, Yanhua [1 ]
Ren, Jincheng [2 ]
机构
[1] Xinyang Agr & Forestry Univ, Dept Informat Engn, Xinyang 464000, Peoples R China
[2] Henan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450045, Henan, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2018年 / 22卷 / 06期
基金
中国国家自然科学基金;
关键词
distributed order diffusion equations; finite element method; fully discrete scheme; superconvergence estimate; MULTIPLE POSITIVE SOLUTIONS; DIFFERENCE-SCHEMES; STABILITY; APPROXIMATIONS; EXISTENCE;
D O I
10.11650/tjm/180606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a numerical fully discrete scheme based on the finite element approximation for the distributed order time fractional variable coefficient diffusion equations is developed and a complete error analysis is provided. The weighted and shifted Grunwald formula is applied for the time-fractional derivative and finite element approach for the spatial discretization. The unconditional stability and the global superconvergence estimate of the fully discrete scheme are proved rigorously. Extensive numerical experiments are presented to illustrate the accuracy and efficiency of the scheme, and to verify the convergence theory.
引用
收藏
页码:1529 / 1545
页数:17
相关论文
共 50 条
  • [41] Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations
    Bu, Weiping
    Xiao, Aiguo
    Zeng, Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (01) : 422 - 441
  • [42] Initial-boundary value problem for distributed order time-fractional diffusion equations
    Li, Zhiyuan
    Kian, Yavar
    Soccorsi, Eric
    ASYMPTOTIC ANALYSIS, 2019, 115 (1-2) : 95 - 126
  • [43] Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations
    Weiping Bu
    Aiguo Xiao
    Wei Zeng
    Journal of Scientific Computing, 2017, 72 : 422 - 441
  • [44] Novel superconvergence analysis of a low order FEM for nonlinear time-fractional Joule heating problem
    Shi, Xiangyu
    Wang, Haijie
    Shi, Dongyang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 133
  • [45] The Maximum Principle for Variable-Order Fractional Diffusion Equations and the Estimates of Higher Variable-Order Fractional Derivatives
    Xue, Guangming
    Lin, Funing
    Su, Guangwang
    FRONTIERS IN PHYSICS, 2020, 8
  • [46] Simultaneous uniqueness identification of the fractional order and diffusion coefficient in a time-fractional diffusion equation
    Jing, Xiaohua
    Jia, Junxiong
    Song, Xueli
    APPLIED MATHEMATICS LETTERS, 2025, 162
  • [47] Reconstructing the diffusion coefficient in fractional diffusion equations
    Al-Jamal, Mohammad F.
    Rawashdeh, E. A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 112 - 123
  • [48] Reconstructing the diffusion coefficient in fractional diffusion equations
    Al-Jamal, Mohammad F.
    Rawashdeh, E.A.
    Italian Journal of Pure and Applied Mathematics, 2020, 44 : 112 - 123
  • [49] An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order
    Gu, Xian-Ming
    Sun, Hai-Wei
    Zhao, Yong-Liang
    Zheng, Xiangcheng
    APPLIED MATHEMATICS LETTERS, 2021, 120
  • [50] Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems
    Zheng, Xiangcheng
    Wang, Hong
    APPLICABLE ANALYSIS, 2022, 101 (06) : 1848 - 1870