Superconvergence of FEM for Distributed Order Time Fractional Variable Coefficient Diffusion Equations

被引:1
|
作者
Yang, Yanhua [1 ]
Ren, Jincheng [2 ]
机构
[1] Xinyang Agr & Forestry Univ, Dept Informat Engn, Xinyang 464000, Peoples R China
[2] Henan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450045, Henan, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2018年 / 22卷 / 06期
基金
中国国家自然科学基金;
关键词
distributed order diffusion equations; finite element method; fully discrete scheme; superconvergence estimate; MULTIPLE POSITIVE SOLUTIONS; DIFFERENCE-SCHEMES; STABILITY; APPROXIMATIONS; EXISTENCE;
D O I
10.11650/tjm/180606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a numerical fully discrete scheme based on the finite element approximation for the distributed order time fractional variable coefficient diffusion equations is developed and a complete error analysis is provided. The weighted and shifted Grunwald formula is applied for the time-fractional derivative and finite element approach for the spatial discretization. The unconditional stability and the global superconvergence estimate of the fully discrete scheme are proved rigorously. Extensive numerical experiments are presented to illustrate the accuracy and efficiency of the scheme, and to verify the convergence theory.
引用
收藏
页码:1529 / 1545
页数:17
相关论文
共 50 条
  • [31] A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Wang, Hong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 1443 - 1458
  • [32] Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction–diffusion equations
    M. A. Abdelkawy
    António M. Lopes
    M. A. Zaky
    Computational and Applied Mathematics, 2019, 38
  • [33] Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction–diffusion equations
    Abdelkawy, M.A.
    Lopes, António M.
    Zaky, M.A.
    Computational and Applied Mathematics, 2019, 38 (02):
  • [34] Two-grid finite element methods for nonlinear time fractional variable coefficient diffusion equations
    Zeng, Yunhua
    Tan, Zhijun
    Applied Mathematics and Computation, 2022, 434
  • [35] An efficient difference scheme for the non-Fickian time-fractional diffusion equations with variable coefficient
    Feng, Zhouping
    Ran, Maohua
    Liu, Yang
    APPLIED MATHEMATICS LETTERS, 2021, 121
  • [36] Two-grid finite element methods for nonlinear time fractional variable coefficient diffusion equations
    Zeng, Yunhua
    Tan, Zhijun
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 434
  • [37] A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations
    Huan Liu
    Aijie Cheng
    Hong Wang
    Journal of Scientific Computing, 2020, 85
  • [38] Effective difference methods for solving the variable coefficient fourth-order fractional sub-diffusion equations
    Pu, Zhe
    Ran, Maohua
    Luo, Hong
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (01) : 291 - 309
  • [39] A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations
    Liu, Huan
    Cheng, Aijie
    Wang, Hong
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (01)
  • [40] An Efficient Operational Matrix Technique for Multidimensional Variable-Order Time Fractional Diffusion Equations
    Zaky, M. A.
    Ezz-Eldien, S. S.
    Doha, E. H.
    Tenreiro Machado, J. A.
    Bhrawy, A. H.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (06):