Superconvergence of FEM for Distributed Order Time Fractional Variable Coefficient Diffusion Equations

被引:1
|
作者
Yang, Yanhua [1 ]
Ren, Jincheng [2 ]
机构
[1] Xinyang Agr & Forestry Univ, Dept Informat Engn, Xinyang 464000, Peoples R China
[2] Henan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450045, Henan, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2018年 / 22卷 / 06期
基金
中国国家自然科学基金;
关键词
distributed order diffusion equations; finite element method; fully discrete scheme; superconvergence estimate; MULTIPLE POSITIVE SOLUTIONS; DIFFERENCE-SCHEMES; STABILITY; APPROXIMATIONS; EXISTENCE;
D O I
10.11650/tjm/180606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a numerical fully discrete scheme based on the finite element approximation for the distributed order time fractional variable coefficient diffusion equations is developed and a complete error analysis is provided. The weighted and shifted Grunwald formula is applied for the time-fractional derivative and finite element approach for the spatial discretization. The unconditional stability and the global superconvergence estimate of the fully discrete scheme are proved rigorously. Extensive numerical experiments are presented to illustrate the accuracy and efficiency of the scheme, and to verify the convergence theory.
引用
收藏
页码:1529 / 1545
页数:17
相关论文
共 50 条
  • [1] Superconvergence Analysis of Anisotropic FEMs for Time Fractional Variable Coefficient Diffusion Equations
    Wei, Yabing
    Zhao, Yanmin
    Wang, Fenling
    Tang, Yifa
    Yang, Jiye
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) : 4411 - 4429
  • [2] Superconvergence Analysis of Anisotropic FEMs for Time Fractional Variable Coefficient Diffusion Equations
    Yabing Wei
    Yanmin Zhao
    Fenling Wang
    Yifa Tang
    Jiye Yang
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 4411 - 4429
  • [3] Superconvergence analysis of FEM for 2D multi-term time fractional diffusion-wave equations with variable coefficient
    Shi, Y. H.
    Zhao, Y. M.
    Wang, F. L.
    Tang, Y. F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (08) : 1621 - 1635
  • [4] Coefficient inverse problem for variable order time-fractional diffusion equations from distributed data
    Daijun Jiang
    Zhiyuan Li
    Calcolo, 2022, 59
  • [5] Coefficient inverse problem for variable order time-fractional diffusion equations from distributed data
    Jiang, Daijun
    Li, Zhiyuan
    CALCOLO, 2022, 59 (04)
  • [6] Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations
    Zheng, Xiangcheng
    Cheng, Jin
    Wang, Hong
    INVERSE PROBLEMS, 2019, 35 (12)
  • [7] Convergence analysis of the anisotropic FEM for 2D time fractional variable coefficient diffusion equations on graded meshes
    Wei, Yabing
    Lu, Shujuan
    Chen, Hu
    Zhao, Yanmin
    Wang, Fenling
    APPLIED MATHEMATICS LETTERS, 2021, 111
  • [8] Generalized distributed order diffusion equations with composite time fractional derivative
    Sandev, Trifce
    Tomovski, Zivorad
    Crnkovic, Bojan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1028 - 1040
  • [9] A fast difference scheme for the variable coefficient time-fractional diffusion wave equations
    Ran, Maohua
    Lei, Xiaojuan
    APPLIED NUMERICAL MATHEMATICS, 2021, 167 : 31 - 44
  • [10] Wellposedness and regularity of the variable-order time-fractional diffusion equations
    Wang, Hong
    Zheng, Xiangcheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1778 - 1802