Boundedness of Hardy-type operators with a kernel: integral weighted conditions for the case

被引:0
|
作者
Krepela, Martin [1 ,2 ]
机构
[1] Karlstad Univ, Fac Hlth Sci & Technol, Dept Math & Comp Sci, S-65188 Karlstad, Sweden
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
来源
REVISTA MATEMATICA COMPLUTENSE | 2017年 / 30卷 / 03期
关键词
Hardy operators; Integral operators; Weighted inequalities; Weighted function spaces; REDUCTION THEOREMS; MONOTONE-FUNCTIONS; NORM INEQUALITIES; LORENTZ SPACES;
D O I
10.1007/s13163-017-0230-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < infinity and 0 < q < p. We prove necessary and sufficient conditions under which the weighted inequality (integral(infinity)(0) (integral(t)(0) f(x)U(x, t) dx)(q) w(t) dt)(1/q) <= C (integral(infinity)(0) f(p)(t)v(t) dt)(1/p), where U is a so-called -regular kernel, holds for all nonnegative measurable functions f on (0, infinity). The conditions have an explicit integral form. Analogous results for the case and for the dual version of the inequality are also presented. The results are applied to close various gaps in the theory of weighted operator inequalities.
引用
收藏
页码:547 / 587
页数:41
相关论文
共 50 条
  • [41] On weighted iterated Hardy-type inequalities
    Rza Mustafayev
    Positivity, 2018, 22 : 275 - 299
  • [42] On weighted iterated Hardy-type inequalities
    Mustafayev, Rza
    POSITIVITY, 2018, 22 (01) : 275 - 299
  • [43] On a scale of Hardy-type integral inequalities
    Dubinskii, Yu. A.
    DOKLADY MATHEMATICS, 2010, 81 (01) : 111 - 114
  • [44] New Hardy-type integral inequalities
    Manna, Atanu
    ACTA SCIENTIARUM MATHEMATICARUM, 2020, 86 (3-4): : 467 - 491
  • [45] Weighted Boundedness for Toeplitz Type Operators Associated to Singular Integral Operator with Non-Smooth Kernel
    Liu, Lanzhe
    FILOMAT, 2016, 30 (09) : 2489 - 2502
  • [46] On a weighted inequality for a Hardy-type operator
    Prokhorov, D. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 284 (01) : 208 - 215
  • [47] On a weighted inequality for a Hardy-type operator
    D. V. Prokhorov
    Proceedings of the Steklov Institute of Mathematics, 2014, 284 : 208 - 215
  • [48] Hardy-type estimates for Dirac operators
    Dolbeault, Jean
    Esteban, Maria J.
    Duoandikoetxea, Javier
    Vega, Luis
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (06): : 885 - 900
  • [49] On a scale of Hardy-type integral inequalities
    Yu. A. Dubinskii
    Doklady Mathematics, 2010, 81 : 111 - 114
  • [50] WEIGHTED INEQUALITIES OF HARDY-TYPE ON AMALGAMS
    Jain, Pankaj
    Kumar, Suket
    REAL ANALYSIS EXCHANGE, 2008, 34 (02) : 483 - 499