Boundedness of Hardy-type operators with a kernel: integral weighted conditions for the case

被引:0
|
作者
Krepela, Martin [1 ,2 ]
机构
[1] Karlstad Univ, Fac Hlth Sci & Technol, Dept Math & Comp Sci, S-65188 Karlstad, Sweden
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
来源
REVISTA MATEMATICA COMPLUTENSE | 2017年 / 30卷 / 03期
关键词
Hardy operators; Integral operators; Weighted inequalities; Weighted function spaces; REDUCTION THEOREMS; MONOTONE-FUNCTIONS; NORM INEQUALITIES; LORENTZ SPACES;
D O I
10.1007/s13163-017-0230-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < infinity and 0 < q < p. We prove necessary and sufficient conditions under which the weighted inequality (integral(infinity)(0) (integral(t)(0) f(x)U(x, t) dx)(q) w(t) dt)(1/q) <= C (integral(infinity)(0) f(p)(t)v(t) dt)(1/p), where U is a so-called -regular kernel, holds for all nonnegative measurable functions f on (0, infinity). The conditions have an explicit integral form. Analogous results for the case and for the dual version of the inequality are also presented. The results are applied to close various gaps in the theory of weighted operator inequalities.
引用
收藏
页码:547 / 587
页数:41
相关论文
共 50 条
  • [31] On Hardy-type integral inequalities
    Tuo Leng
    Yong Feng
    Applied Mathematics and Mechanics, 2013, 34 : 1297 - 1304
  • [32] Hardy-type operators with general kernels and characterizations of dynamic weighted inequalities
    Saker, S. H.
    Osman, M. M.
    O'Regan, D.
    Agarwal, R. P.
    ANNALES POLONICI MATHEMATICI, 2021, 126 (01) : 55 - 78
  • [33] HARDY-TYPE WEIGHTED INEQUALITY FOR ELLIPTIC-OPERATORS AND ITS APPLICATIONS
    MESHKOV, VZ
    DOKLADY AKADEMII NAUK SSSR, 1987, 295 (06): : 1310 - 1313
  • [34] Necessary and sufficient conditions for the boundedness of weighted Hardy operators in Holder spaces
    Burtseva, Evgeniya
    Persson, Lars-Erik
    Samko, Natasha
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (11-12) : 1655 - 1665
  • [35] EQUIVALENT INTEGRAL CONDITIONS RELATED TO BILINEAR HARDY-TYPE INEQUALITIES
    Kanjilal, Saikat
    Persson, Lars-Erik
    Shambilova, Guldarya E.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1535 - 1548
  • [36] On the compactness and approximation numbers of Hardy-type integral operators in Lorentz spaces
    Lomakina, E
    Stepanov, V
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 53 : 369 - 382
  • [37] WEIGHTED INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATORS WITH KERNEL SATISFYING HORMANDER TYPE CONDITIONS
    Bernardis, Ana L.
    Lorente, Maria
    Silvina Riveros, Maria
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (04): : 881 - 895
  • [38] ON HARDY-TYPE INEQUALITIES FOR WEIGHTED MEANS
    Pales, Zsolt
    Pasteczka, Pawel
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (01): : 217 - 233
  • [39] Interpolation of Operators in Hardy-Type Spaces
    Krotov, V. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 323 (01) : 173 - 187
  • [40] BOUNDEDNESS OF MARCINKIEWICZ INTEGRAL ON THE WEIGHTED HERZ-TYPE HARDY SPACES
    Lejin Xu (Zhejiang University
    Analysis in Theory and Applications, 2006, (01) : 56 - 64