Strong semiclassical approximation of Wigner functions for the Hartree dynamics

被引:22
|
作者
Athanassoulis, Agissilaos [1 ]
Paul, Thierry [2 ,3 ]
Pezzotti, Federica [4 ]
Pulvirenti, Mario [5 ]
机构
[1] Univ Cambridge, DAMTP, Cambridge CB2 1TN, England
[2] Ecole Polytech, CNRS, F-91128 Palaiseau, France
[3] Ecole Polytech, CMLS UMR 7640, Palaiseau, France
[4] Univ Basque Country, Dept Matemat, E-48080 Bilbao, Spain
[5] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, Rome, Italy
关键词
Semiclassical analysis; Wigner formalism; Husimi transform; Hartree dynamics; CLASSICAL FIELD LIMIT; SCATTERING THEORY; QUANTUM; SCHRODINGER; EXPANSION; EQUATION;
D O I
10.4171/RLM/613
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Wigner equation corresponding to a nonlinear Schrodinger evolution of the Hartree type in the semiclassical limit h -> 0. Under appropriate assumptions on the initial data and the interaction potential, we show that the Wigner function is close in L-2 to its weak limit, the solution of the corresponding Vlasov equation. The strong approximation allows the construction of semiclassical operator-valued observables, approximating their quantum counterparts in Hilbert-Schmidt topology. The proof makes use of a pointwise-positivity manipulation, which seems necessary in working with the L-2 norm and the precise form of the nonlinearity. We employ the Husimi function as a pivot between the classical probability density and the Wigner function, which-as it is well known-is not pointwise positive in general.
引用
收藏
页码:525 / 552
页数:28
相关论文
共 50 条
  • [1] SEMICLASSICAL PROPERTIES OF WIGNER FUNCTIONS
    PERES, A
    PHYSICA SCRIPTA, 1986, 34 (6B) : 736 - 737
  • [2] On the propagation of semiclassical Wigner functions
    Rios, PPD
    de Almeida, AMO
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (11): : 2609 - 2617
  • [3] Decoherence of semiclassical Wigner functions
    de Almeida, AMO
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (01): : 67 - 86
  • [4] Semiclassical analysis of Wigner functions
    Veble, G
    Robnik, M
    Romanovski, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (18): : 4151 - 4168
  • [5] Semiclassical expansion of Wigner functions
    Pulvirenti, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (05)
  • [6] Semiclassical propagation of Wigner functions
    Dittrich, T.
    Gomez, E. A.
    Pachon, L. A.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (21):
  • [7] Semiclassical Approximation of the Wigner Function for the Canonical Ensemble
    Marcos Gil de Oliveira
    Alfredo Miguel Ozorio de Almeida
    Journal of Statistical Physics, 190
  • [8] Semiclassical Approximation of the Wigner Function for the Canonical Ensemble
    de Oliveira, Marcos Gil
    de Almeida, Alfredo Miguel Ozorio
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (09)
  • [9] Mapping Wigner distribution functions into semiclassical distribution functions
    Bund, GW
    Tijero, MC
    PHYSICAL REVIEW A, 2000, 61 (05): : 8
  • [10] Semiclassical dynamics in Wigner phase space I: Adiabatic hybrid Wigner dynamics
    Malpathak, Shreyas
    Ananth, Nandini
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (09):