Strong semiclassical approximation of Wigner functions for the Hartree dynamics

被引:22
|
作者
Athanassoulis, Agissilaos [1 ]
Paul, Thierry [2 ,3 ]
Pezzotti, Federica [4 ]
Pulvirenti, Mario [5 ]
机构
[1] Univ Cambridge, DAMTP, Cambridge CB2 1TN, England
[2] Ecole Polytech, CNRS, F-91128 Palaiseau, France
[3] Ecole Polytech, CMLS UMR 7640, Palaiseau, France
[4] Univ Basque Country, Dept Matemat, E-48080 Bilbao, Spain
[5] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, Rome, Italy
关键词
Semiclassical analysis; Wigner formalism; Husimi transform; Hartree dynamics; CLASSICAL FIELD LIMIT; SCATTERING THEORY; QUANTUM; SCHRODINGER; EXPANSION; EQUATION;
D O I
10.4171/RLM/613
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Wigner equation corresponding to a nonlinear Schrodinger evolution of the Hartree type in the semiclassical limit h -> 0. Under appropriate assumptions on the initial data and the interaction potential, we show that the Wigner function is close in L-2 to its weak limit, the solution of the corresponding Vlasov equation. The strong approximation allows the construction of semiclassical operator-valued observables, approximating their quantum counterparts in Hilbert-Schmidt topology. The proof makes use of a pointwise-positivity manipulation, which seems necessary in working with the L-2 norm and the precise form of the nonlinearity. We employ the Husimi function as a pivot between the classical probability density and the Wigner function, which-as it is well known-is not pointwise positive in general.
引用
收藏
页码:525 / 552
页数:28
相关论文
共 50 条
  • [41] Semiclassical propagator of the Wigner function
    Dittrich, T
    Viviescas, C
    Sandoval, L
    PHYSICAL REVIEW LETTERS, 2006, 96 (07)
  • [42] Semiclassical formulae for Wigner distributions
    Barkhofen, Sonja
    Schuette, Philipp
    Weich, Tobias
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (24)
  • [43] Semiclassical analysis for Hartree equation
    Carles, Remi
    Masaki, Satoshi
    ASYMPTOTIC ANALYSIS, 2008, 58 (04) : 211 - 227
  • [44] Strong Approximation of Functions by Positive Operators
    Zhuk V.V.
    Journal of Mathematical Sciences, 2016, 217 (1) : 45 - 53
  • [45] Remarks on strong approximation of continuous functions
    Yu, DanSheng
    ACTA SCIENTIARUM MATHEMATICARUM, 2007, 73 (1-2): : 121 - 132
  • [46] Strong approximation by bivariate entire functions
    Nowakowski, K
    Taberski, R
    FUNCTION SPACES, PROCEEDINGS, 2000, 213 : 413 - 426
  • [47] STRONG APPROXIMATION OF ALMOST PERIODIC FUNCTIONS
    Lenski, Wlodzimierz
    Szal, Bogdan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (04): : 1353 - 1364
  • [48] φ-Strong approximation of functions by trigonometric polynomials
    Lasuriya, R. A.
    MATHEMATICAL NOTES, 2017, 102 (1-2) : 43 - 52
  • [49] ϕ-Strong approximation of functions by trigonometric polynomials
    R. A. Lasuriya
    Mathematical Notes, 2017, 102 : 43 - 52
  • [50] Strong approximation ofGSBV functions by piecewise smooth functions
    Cortesani G.
    Annali dell’Università di Ferrara, 1997, 43 (1): : 27 - 49