On the propagation of semiclassical Wigner functions

被引:36
|
作者
Rios, PPD
de Almeida, AMO
机构
[1] Lab Nacl Computacao Cientif, BR-25651070 Petropolis, RJ, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
来源
关键词
D O I
10.1088/0305-4470/35/11/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish the difference between the propagation of Semiclassical Wigner functions and classical Liouville propagation. First we rediscuss the semiclassical limit for the propagator of Wigner functions, which on its own leads to their classical propagation. Then, via stationary phase evaluation of the full integral evolution equation, using the semiclassical expressions of Wigner functions, we provide the correct geometrical Prescription for their semiclassical propagation. This is determined by the classical trajectories of the tips of the chords defined by the initial semiclassical Wigner function and centred on their arguments, in contrast to the Liouville propagation which is determined by the classical trajectories of the arguments themselves.
引用
收藏
页码:2609 / 2617
页数:9
相关论文
共 50 条
  • [1] Semiclassical propagation of Wigner functions
    Dittrich, T.
    Gomez, E. A.
    Pachon, L. A.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (21):
  • [2] SEMICLASSICAL PROPERTIES OF WIGNER FUNCTIONS
    PERES, A
    PHYSICA SCRIPTA, 1986, 34 (6B) : 736 - 737
  • [3] Decoherence of semiclassical Wigner functions
    de Almeida, AMO
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (01): : 67 - 86
  • [4] Semiclassical analysis of Wigner functions
    Veble, G
    Robnik, M
    Romanovski, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (18): : 4151 - 4168
  • [5] Semiclassical expansion of Wigner functions
    Pulvirenti, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (05)
  • [6] Mapping Wigner distribution functions into semiclassical distribution functions
    Bund, GW
    Tijero, MC
    PHYSICAL REVIEW A, 2000, 61 (05): : 8
  • [7] SEMICLASSICAL WIGNER FUNCTIONS FOR QUANTUM MAPS ON A TORUS
    AGAM, O
    BRENNER, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (05): : 1345 - 1360
  • [8] Semiclassical Wigner functions of quantum maps on a torus
    Agam, O.
    Brenner, N.
    Journal of Coal Quality, 1994, 13 (01):
  • [9] Propagation algorithms for Wigner functions
    Zhong, Minyi
    Gross, Herbert
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2016, 12
  • [10] Strong semiclassical approximation of Wigner functions for the Hartree dynamics
    Athanassoulis, Agissilaos
    Paul, Thierry
    Pezzotti, Federica
    Pulvirenti, Mario
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (04) : 525 - 552