On the propagation of semiclassical Wigner functions

被引:36
|
作者
Rios, PPD
de Almeida, AMO
机构
[1] Lab Nacl Computacao Cientif, BR-25651070 Petropolis, RJ, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
来源
关键词
D O I
10.1088/0305-4470/35/11/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish the difference between the propagation of Semiclassical Wigner functions and classical Liouville propagation. First we rediscuss the semiclassical limit for the propagator of Wigner functions, which on its own leads to their classical propagation. Then, via stationary phase evaluation of the full integral evolution equation, using the semiclassical expressions of Wigner functions, we provide the correct geometrical Prescription for their semiclassical propagation. This is determined by the classical trajectories of the tips of the chords defined by the initial semiclassical Wigner function and centred on their arguments, in contrast to the Liouville propagation which is determined by the classical trajectories of the arguments themselves.
引用
收藏
页码:2609 / 2617
页数:9
相关论文
共 50 条
  • [31] Space fractional Wigner equation and its semiclassical limit
    Stickler, B. A.
    Schachinger, E.
    PHYSICAL REVIEW E, 2011, 84 (06):
  • [32] Semiclassical mechanics of the Wigner 6j-symbol
    Aquilanti, Vincenzo
    Haggard, Hal M.
    Hedeman, Austin
    Jeevanjee, Nadir
    Littlejohn, Robert G.
    Yu, Liang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (06)
  • [33] Semiclassical analysis of Wigner 3j-symbol
    Aquilanti, Vincenzo
    Haggard, Hal M.
    Littlejohn, Robert G.
    Yu, Liang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (21) : 5637 - 5674
  • [34] WIGNER PHASE SPACE METHOD - ANALYSIS FOR SEMICLASSICAL APPLICATIONS
    HELLER, EJ
    JOURNAL OF CHEMICAL PHYSICS, 1976, 65 (04): : 1289 - 1298
  • [35] Physical Wigner functions
    Benavides-Riveros, Carlos L.
    Gracia-Bondia, Jose M.
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [36] OSCILLATOR WIGNER FUNCTIONS
    POGOSYAN, GS
    SMORODINSKY, YA
    TERANTONYAN, VM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (04): : 769 - 776
  • [37] Wigner functions on a lattice
    Takami, A
    Hashimoto, T
    Horibe, M
    Hayashi, A
    PHYSICAL REVIEW A, 2001, 64 (03): : 6
  • [38] Efficient propagation of the coherency matrix inspired by plenoptic field representations of nonparaxial Wigner functions
    Wittkopp, Jeremy
    Petruccelli, Jonathan C.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (12) : 2017 - 2024
  • [39] Relativistic Wigner functions
    Bialynicki-Birula, Iwo
    WIGNER 111 - COLOURFUL & DEEP SCIENTIFIC SYMPOSIUM, 2014, 78
  • [40] Entropy and Wigner functions
    Manfredi, G
    Feix, MR
    PHYSICAL REVIEW E, 2000, 62 (04): : 4665 - 4674