Nanoscale photovoltage mapping in CZTSe/CuxSe heterostructure by using kelvin probe force microscopy

被引:2
|
作者
Vishwakarma, Manoj [1 ]
Varandani, Deepak [1 ]
Hendrickx, Mylene [2 ]
Hadermann, Joke [2 ]
Mehta, B. R. [1 ]
机构
[1] IIT Delhi, Dept Phys, Thin Film Lab, New Delhi 110016, India
[2] Univ Antwerp, EMAT, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
关键词
Kesterite; secondary phases; KPFM; surface potential; interface; photovoltage; CU(IN; GA)SE-2; THIN-FILMS; GRAIN-BOUNDARIES; SOLAR-CELLS; KESTERITE CU2ZNSNS4; EFFICIENCY; CZTS;
D O I
10.1088/2053-1591/ab65e6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present work, kelvin probe force microscopy (KPFM) technique has been used to study the CZTSe/CuxSe bilayer interface prepared by multi-step deposition and selenization process of metal precursors. Transmission electron microscopy (TEM) confirmed the bilayer configuration of the CZTSe/CuxSe sample. Two configuration modes (surface mode and junction mode) in KPFM have been employed in order to measure the junction voltage under illumination conditions. The results show that CZTSe/CuxSe has small junction voltage of similar to 21 mV and the presence of CuxSe secondary phase in the CZTSe grain boundaries changes the workfunction of the local grain boundaries region. The negligible photovoltage difference between grain and grain boundaries in photovoltage image indicates that CuxSe phase deteriorates the higher photovoltage at grain boundaries normally observed in CZTSe based device. These results can be important for understanding the role of secondary phases in CZTSe based junction devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Interface electronic property of organic/organic heterostructure visualized via kelvin probe force microscopy
    Niu, Xiaona
    Chen, Jianmei
    Wang, Zhifang
    Zhou, Xu
    Wang, Zi
    Huang, Lizhen
    Chi, Lifeng
    ORGANIC ELECTRONICS, 2018, 61 : 383 - 388
  • [32] Cross-sectional potential imaging of compound semiconductor heterostructure by Kelvin probe force microscopy
    Usunami, T
    Arakawa, M
    Kishimoto, S
    Mizutani, T
    Kagawa, T
    Iwamura, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1998, 37 (3B): : 1522 - 1526
  • [33] Kelvin probe force microscopy of beveled semiconductors
    Ferguson, RS
    Fobelets, K
    Cohen, LF
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (05): : 2133 - 2136
  • [34] Kelvin probe force microscopy of molecular surfaces
    Fujihira, M
    ANNUAL REVIEW OF MATERIALS SCIENCE, 1999, 29 : 353 - 380
  • [35] Cross-sectional observation in nanoscale for Si power MOSFET by atomic force microscopy/Kelvin probe force microscopy/scanning capacitance force microscopy
    Doi, Atsushi
    Nakajima, Mizuki
    Masuda, Sho
    Satoh, Nobuo
    Yamamoto, Hidekazu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58
  • [36] Kelvin probe force microscopy and its application
    Melitz, Wilhelm
    Shen, Jian
    Kummel, Andrew C.
    Lee, Sangyeob
    SURFACE SCIENCE REPORTS, 2011, 66 (01) : 1 - 27
  • [37] Practical aspects of Kelvin probe force microscopy
    Jacobs, HO
    Knapp, HF
    Stemmer, A
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (03): : 1756 - 1760
  • [38] Kelvin probe force microscopy for material characterization
    Glatzel, Thilo
    Gysin, Urs
    Meyer, Ernst
    MICROSCOPY, 2022, 71 : i165 - i173
  • [39] On the deconvolution of Kelvin probe force microscopy data
    Bluemel, A.
    Plank, H.
    Klug, A.
    Fisslthaler, E.
    Sezen, M.
    Grogger, W.
    List, E. J. W.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (05):
  • [40] Resolution and contrast in Kelvin probe force microscopy
    Jacobs, HO
    Leuchtmann, P
    Homan, OJ
    Stemmer, A
    JOURNAL OF APPLIED PHYSICS, 1998, 84 (03) : 1168 - 1173