Nanoscale photovoltage mapping in CZTSe/CuxSe heterostructure by using kelvin probe force microscopy

被引:2
|
作者
Vishwakarma, Manoj [1 ]
Varandani, Deepak [1 ]
Hendrickx, Mylene [2 ]
Hadermann, Joke [2 ]
Mehta, B. R. [1 ]
机构
[1] IIT Delhi, Dept Phys, Thin Film Lab, New Delhi 110016, India
[2] Univ Antwerp, EMAT, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
关键词
Kesterite; secondary phases; KPFM; surface potential; interface; photovoltage; CU(IN; GA)SE-2; THIN-FILMS; GRAIN-BOUNDARIES; SOLAR-CELLS; KESTERITE CU2ZNSNS4; EFFICIENCY; CZTS;
D O I
10.1088/2053-1591/ab65e6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present work, kelvin probe force microscopy (KPFM) technique has been used to study the CZTSe/CuxSe bilayer interface prepared by multi-step deposition and selenization process of metal precursors. Transmission electron microscopy (TEM) confirmed the bilayer configuration of the CZTSe/CuxSe sample. Two configuration modes (surface mode and junction mode) in KPFM have been employed in order to measure the junction voltage under illumination conditions. The results show that CZTSe/CuxSe has small junction voltage of similar to 21 mV and the presence of CuxSe secondary phase in the CZTSe grain boundaries changes the workfunction of the local grain boundaries region. The negligible photovoltage difference between grain and grain boundaries in photovoltage image indicates that CuxSe phase deteriorates the higher photovoltage at grain boundaries normally observed in CZTSe based device. These results can be important for understanding the role of secondary phases in CZTSe based junction devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Microscopic investigation of InGaN/GaN heterostructure laser diode degradation using Kelvin probe force microscopy
    Lochthofen, A.
    Mertin, W.
    Bacher, G.
    Furitsch, M.
    Bruederl, G.
    Strauss, U.
    Haerle, V.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (13)
  • [22] AC Kelvin Probe Force Microscopy Enables Charge Mapping in Water
    Hackl, Thomas
    Schitter, Georg
    Mesquida, Patrick
    ACS NANO, 2022, 16 (11) : 17982 - 17990
  • [23] Pulsed Force Kelvin Probe Force Microscopy
    Jakob, Devon S.
    Wang, Haomin
    Xu, Xiaoji G.
    ACS NANO, 2020, 14 (04) : 4839 - 4848
  • [24] Kelvin probe force microscopy imaging using carbon nanotube probe
    Takahashi, S
    Kishida, T
    Akita, S
    Nakayama, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2001, 40 (6B): : 4314 - 4316
  • [25] Elucidating Piezoelectricity and Strain in Monolayer MoS2 at the Nanoscale Using Kelvin Probe Force Microscopy
    De Palma, Alex C.
    Peng, Xinyue
    Arash, Saba
    Gao, Frank Y.
    Baldini, Edoardo
    Li, Xiaoqin
    Yu, Edward T.
    NANO LETTERS, 2024, 24 (06) : 1835 - 1842
  • [26] Trapped charge mapping in crystalline organic transistors by using scanning Kelvin probe force microscopy
    Ando, Masahiko
    Heike, Seiji
    Kawasaki, Masahiro
    Hashizume, Tomihiro
    APPLIED PHYSICS LETTERS, 2014, 105 (19)
  • [27] Pulsed Force Kelvin Probe Force Microscopy-A New Type of Kelvin Probe Force Microscopy under Ambient Conditions
    Zahmatkeshsaredorahi, Amirhossein
    Jakob, Devon S.
    Xu, Xiaoji G.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (24): : 9813 - 9827
  • [28] Heterodyne AC Kelvin Probe Force Microscopy for Nanoscale Surface Potential Imaging in Liquids
    Hackl, Thomas
    Poik, Mathias
    Schitter, Georg
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [29] Heterodyne AC Kelvin Probe Force Microscopy for Nanoscale Surface Potential Imaging in Liquids
    Hackl, Thomas
    Poik, Mathias
    Schitter, Georg
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [30] Heterodyne AC Kelvin Probe Force Microscopy for Nanoscale Surface Potential Imaging in Liquids
    Hackl, Thomas
    Poik, Mathias
    Schitter, Georg
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72