Fusing multimodal neuroimaging data with a variational autoencoder

被引:8
|
作者
Geenjaar, Eloy [1 ,2 ]
Lewis, Noah [1 ]
Fu, Zening [1 ]
Venkatdas, Rohan [1 ,3 ]
Plis, Sergey [1 ]
Calhoun, Vince [1 ]
机构
[1] Emory, Georgia State, Georgia Tech, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30303 USA
[2] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Delft, Netherlands
[3] Lambert High Sch, Suwanee, GA USA
来源
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) | 2021年
关键词
D O I
10.1109/EMBC46164.2021.9630806
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Neuroimaging studies often collect multimodal data. These modalities contain both shared and mutually exclusive information about the brain. This work aims to find a scalable and interpretable method to fuse the information of multiple neuroimaging modalities into a lower-dimensional latent space using a variational autoencoder (VAE). To assess whether the encoder-decoder pair retains meaningful information, this work evaluates the representations using a schizophrenia classification task. The linear classifier, trained on the representations obtained through dimensionality reduction, achieves an area under the curve of the receiver operating characteristic (ROC-AUC) of 0.8609. Thus, training on a multimodal dataset with functional brain networks and a structural magnetic resonance imaging (sMRI) scan, leads to dimensionality reduction that retains meaningful information. The proposed dimensionality reduction outperforms both early and late fusion principal component analysis on the classification task.
引用
收藏
页码:3630 / 3633
页数:4
相关论文
共 50 条
  • [31] CLASSIFICATION OF EXPERT-NOVICE LEVEL USING EYE TRACKING AND MOTION DATA VIA CONDITIONAL MULTIMODAL VARIATIONAL AUTOENCODER
    Akamatsu, Yusuke
    Maeda, Keisuke
    Ogawa, Takahiro
    Haseyama, Miki
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1360 - 1364
  • [32] Evaluating Variational Autoencoder as a Private Data Release Mechanism for Tabular Data
    Li, Szu-Chuang
    Tai, Bo-Chen
    Huang, Yennun
    2019 IEEE 24TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC 2019), 2019, : 198 - 206
  • [33] Classification of Mild Cognitive Impairment by Fusing Neuroimaging and Gene Expression Data
    Lyu, Yanjun
    Yu, Xiaowei
    Zhang, Lu
    Zhu, Dajiang
    THE 14TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2021, 2021, : 26 - 32
  • [34] Disaster Image Classification by Fusing Multimodal Social Media Data
    Zou, Zhiqiang
    Gan, Hongyu
    Huang, Qunying
    Cai, Tianhui
    Cao, Kai
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (10)
  • [35] Multimodal Network Embedding via Attention based Multi-view Variational Autoencoder
    Huang, Feiran
    Zhang, Xiaoming
    Li, Chaozhuo
    Li, Zhoujun
    He, Yueying
    Zhao, Zhonghua
    ICMR '18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2018, : 108 - 116
  • [36] Explainable Dynamic Multimodal Variational Autoencoder for the Prediction of Patients With Suspected Central Precocious Puberty
    Xu, Yiming
    Liu, Xiaohong
    Pan, Liyan
    Mao, Xiaojian
    Liang, Huiying
    Wang, Guangyu
    Chen, Ting
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (03) : 1362 - 1373
  • [37] MultiXplore: Visual exploration platform for multimodal neuroimaging data
    Bakhshmand, Saeed M.
    Khan, Ali R.
    de Ribaupierre, Sandrine
    Eagleson, Roy
    JOURNAL OF NEUROSCIENCE METHODS, 2017, 290 : 1 - 12
  • [38] General overview on the merits of multimodal neuroimaging data fusion
    Uludag, Kamil
    Roebroeck, Alard
    NEUROIMAGE, 2014, 102 : 3 - 10
  • [39] Gaussian Mixture Variational Autoencoder with Whitening Score for Multimodal Time Series Anomaly Detection
    Zhu, Jiaqi
    Deng, Fang
    Zhao, Jiachen
    Ye, Ziman
    Chen, Jie
    2022 IEEE 17TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION, ICCA, 2022, : 480 - 485
  • [40] Bidirectional Mapping with Contrastive Learning on Multimodal Neuroimaging Data
    Ye, Kai
    Tang, Haoteng
    Dai, Siyuan
    Guo, Lei
    Liu, Johnny Yuehan
    Wang, Yalin
    Leow, Alex
    Thompson, Paul M.
    Huang, Heng
    Zhan, Liang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III, 2023, 14222 : 138 - 148