Fusing multimodal neuroimaging data with a variational autoencoder

被引:8
|
作者
Geenjaar, Eloy [1 ,2 ]
Lewis, Noah [1 ]
Fu, Zening [1 ]
Venkatdas, Rohan [1 ,3 ]
Plis, Sergey [1 ]
Calhoun, Vince [1 ]
机构
[1] Emory, Georgia State, Georgia Tech, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30303 USA
[2] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Delft, Netherlands
[3] Lambert High Sch, Suwanee, GA USA
来源
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) | 2021年
关键词
D O I
10.1109/EMBC46164.2021.9630806
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Neuroimaging studies often collect multimodal data. These modalities contain both shared and mutually exclusive information about the brain. This work aims to find a scalable and interpretable method to fuse the information of multiple neuroimaging modalities into a lower-dimensional latent space using a variational autoencoder (VAE). To assess whether the encoder-decoder pair retains meaningful information, this work evaluates the representations using a schizophrenia classification task. The linear classifier, trained on the representations obtained through dimensionality reduction, achieves an area under the curve of the receiver operating characteristic (ROC-AUC) of 0.8609. Thus, training on a multimodal dataset with functional brain networks and a structural magnetic resonance imaging (sMRI) scan, leads to dimensionality reduction that retains meaningful information. The proposed dimensionality reduction outperforms both early and late fusion principal component analysis on the classification task.
引用
收藏
页码:3630 / 3633
页数:4
相关论文
共 50 条
  • [21] Multimodal neuroimaging data integration and pathway analysis
    Zhao, Yi
    Li, Lexin
    Caffo, Brian S.
    BIOMETRICS, 2021, 77 (03) : 879 - 889
  • [22] Pypes: Workflows for Processing Multimodal Neuroimaging Data
    Savio, Alexandre M.
    Schutte, Michael
    Grana, Manuel
    Yakushev, Igor
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [23] Multimodal Variational Autoencoder for Low-Cost Cardiac Hemodynamics Instability Detection
    Suvon, Mohammod N. I.
    Tripathi, Prasun C.
    Fan, Wenrui
    Zhou, Shuo
    Liu, Xianyuan
    Alabed, Samer
    Osmani, Venet
    Swift, Andrew J.
    Chen, Chen
    Lu, Haiping
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT I, 2024, 15001 : 296 - 306
  • [24] Multimodal Deep Generative Models for Trajectory Prediction: A Conditional Variational Autoencoder Approach
    Ivanovic, Boris
    Leung, Karen
    Schmerling, Edward
    Pavone, Marco
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02): : 295 - 302
  • [25] Dimension Reduction on Open Data using Variational Autoencoder
    Lee, Hyunmin
    Wu, Zhen Hao
    Zhang, Zhaolei
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1080 - 1085
  • [26] Stochastic inversion of geophysical data by a conditional variational autoencoder
    McAliley, Wallace Anderson
    Li, Yaoguo
    GEOPHYSICS, 2024, 89 (01) : WA219 - WA232
  • [27] Data-Targeted Prior Distribution for Variational AutoEncoder
    Akkari, Nissrine
    Casenave, Fabien
    Daniel, Thomas
    Ryckelynck, David
    FLUIDS, 2021, 6 (10)
  • [28] Relational Variational Autoencoder for Link Prediction with Multimedia Data
    Li, Xiaopeng
    She, James
    PROCEEDINGS OF THE THEMATIC WORKSHOPS OF ACM MULTIMEDIA 2017 (THEMATIC WORKSHOPS'17), 2017, : 93 - 100
  • [29] PRESERVATION OF ANOMALOUS SUBGROUPS ON VARIATIONAL AUTOENCODER TRANSFORMED DATA
    Maina, Samuel C.
    Bryant, Reginald E.
    Ogallo, William O.
    Varshney, Kush R.
    Speakman, Skyler
    Cintas, Celia
    Walcott-Bryant, Aisha
    Samoilescu, Robert-Florian
    Weldemariam, Komminist
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3627 - 3631
  • [30] CTVAE: Contrastive Tabular Variational Autoencoder for imbalance data
    Wang, Alex X.
    Le, Minh Quang
    Duong, Huu-Thanh
    Van, Bay Nguyen
    Nguyen, Binh P.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025,