Fusing multimodal neuroimaging data with a variational autoencoder

被引:8
|
作者
Geenjaar, Eloy [1 ,2 ]
Lewis, Noah [1 ]
Fu, Zening [1 ]
Venkatdas, Rohan [1 ,3 ]
Plis, Sergey [1 ]
Calhoun, Vince [1 ]
机构
[1] Emory, Georgia State, Georgia Tech, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30303 USA
[2] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Delft, Netherlands
[3] Lambert High Sch, Suwanee, GA USA
关键词
D O I
10.1109/EMBC46164.2021.9630806
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Neuroimaging studies often collect multimodal data. These modalities contain both shared and mutually exclusive information about the brain. This work aims to find a scalable and interpretable method to fuse the information of multiple neuroimaging modalities into a lower-dimensional latent space using a variational autoencoder (VAE). To assess whether the encoder-decoder pair retains meaningful information, this work evaluates the representations using a schizophrenia classification task. The linear classifier, trained on the representations obtained through dimensionality reduction, achieves an area under the curve of the receiver operating characteristic (ROC-AUC) of 0.8609. Thus, training on a multimodal dataset with functional brain networks and a structural magnetic resonance imaging (sMRI) scan, leads to dimensionality reduction that retains meaningful information. The proposed dimensionality reduction outperforms both early and late fusion principal component analysis on the classification task.
引用
收藏
页码:3630 / 3633
页数:4
相关论文
共 50 条
  • [1] Multivariate Machine Learning Methods for Fusing Multimodal Functional Neuroimaging Data
    Daehne, Sven
    Biessmann, Felix
    Samek, Wojciech
    Haufe, Stefan
    Goltz, Dominique
    Gundlach, Christopher
    Villringer, Arno
    Fazli, Siamac
    Muller, Klaus-Robert
    PROCEEDINGS OF THE IEEE, 2015, 103 (09) : 1507 - 1530
  • [2] Multimodal Weibull Variational Autoencoder for Jointly Modeling Image-Text Data
    Wang, Chaojie
    Chen, Bo
    Xiao, Sucheng
    Wang, Zhengjue
    Zhang, Hao
    Wang, Penghui
    Han, Ning
    Zhou, Mingyuan
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) : 11156 - 11171
  • [3] A Multimodal Hierarchical Variational Autoencoder for Saliency Detection
    Yu, Zhengyang
    Zhang, Jing
    Barnes, Nick
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [4] MVAE: Multimodal Variational Autoencoder for Fake News Detection
    Khattar, Dhruv
    Goud, Jaipal Singh
    Gupta, Manish
    Varma, Vasudeva
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 2915 - 2921
  • [5] Bayesian structural model updating with multimodal variational autoencoder
    Itoi, Tatsuya
    Amishiki, Kazuho
    Lee, Sangwon
    Yaoyama, Taro
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 429
  • [6] Variational AutoEncoder for synthetic insurance data
    Jamotton, Charlotte
    Hainaut, Donatien
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2024, 24
  • [7] Variational autoencoder densified graph attention for fusing synonymous entities: Model and protocol
    Li, Qian
    Wang, Daling
    Feng, Shi
    Song, Kaisong
    Zhang, Yifei
    Yu, Ge
    KNOWLEDGE-BASED SYSTEMS, 2023, 259
  • [8] A multimodal dynamical variational autoencoder for audiovisual speech representation learning
    Sadok, Samir
    Leglaive, Simon
    Girin, Laurent
    Alameda-Pineda, Xavier
    Seguier, Renaud
    NEURAL NETWORKS, 2024, 172
  • [9] GatedVAE: Detecting Multimodal Fake News with Gated Variational AutoEncoder
    Gu, Yimeng
    Castro, Ignacio
    Tyson, Gareth
    16TH ACM WEB SCIENCE CONFERENCE, WEBSCIENCE 2024, 2024, : 129 - 138
  • [10] A multimodal variational autoencoder for estimating progression scores from imaging and microRNA data in rare neurodegenerative diseases
    Kmetzsch, Virgilio
    Becker, Emmanuelle
    Saracino, Dario
    Anquetil, Vincent
    Rinaldi, Daisy
    Camuzat, Agnes
    Gareau, Thomas
    Le Ber, Isabelle
    Colliot, Olivier
    MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032