Numerical evaluation and robustness of the quantum mean-force Gibbs state

被引:13
|
作者
Chiu, Yiu-Fung [1 ]
Strathearn, Aidan [2 ]
Keeling, Jonathan [1 ]
机构
[1] Univ St Andrews, Sch Phys & Astron, ISUPA, St Andrews KY16 9SS, Fife, Scotland
[2] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
基金
英国工程与自然科学研究理事会;
关键词
REDUCED DENSITY-MATRICES; TENSOR PROPAGATOR; TIME EVOLUTION; THERMODYNAMICS;
D O I
10.1103/PhysRevA.106.012204
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a numerical method to determine the Hamiltonian of mean force (HMF) Gibbs state for a quantum system strongly coupled to a reservoir. The method adapts the time evolving matrix product operator (TEMPO) algorithm to imaginary-time propagation. By comparing the real-time and imaginary-time propagation for a generalized spin-boson model, we confirm that the HMF Gibbs state correctly predicts the steady state. We show that the numerical dynamics match the polaron master equation at strong coupling. We illustrate the potential of the imaginary-time TEMPO approach by exploring reservoir-induced entanglement between qubits.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] The geometry of passivity for quantum systems and a novel elementary derivation of the Gibbs state
    Koukoulekidis, Nikolaos
    Alexander, Rhea
    Hebdige, Thomas
    Jennings, David
    QUANTUM, 2021, 5
  • [42] Communication: Gibbs phenomenon and the emergence of the steady-state in quantum transport
    Zwolak, Michael
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (24):
  • [43] Numerical evaluation of mean values of topographical effects
    Janak, J.
    Vanicek, P.
    Alberts, B.
    JOURNAL OF GEODETIC SCIENCE, 2011, 1 (02) : 88 - 93
  • [44] Robustness of random-control quantum-state tomography
    Wang, Jingcheng
    Zhang, Shaoliang
    Cai, Jianming
    Liao, Zhenyu
    Arenz, Christian
    Betzholz, Ralf
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [45] Robustness of optimized numerical estimation schemes for noisy variational quantum algorithms
    Teo, Y. S.
    PHYSICAL REVIEW A, 2024, 109 (01)
  • [46] Generalized transition state theory in terms of the potential of mean force
    Schenter, GK
    Garrett, BC
    Truhlar, DG
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (12): : 5828 - 5833
  • [47] User Adapted Control of Force Feedback Teleoperators: Evaluation and Robustness Analysis
    Barbe, L.
    Bayle, B.
    Laroche, E.
    de Mathelin, M.
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 418 - 423
  • [48] GIBBS STATE FOR ONE-DIMENSIONAL QUANTUM-LATTICE BOSON SYSTEMS
    KHUDOINAZAROV, NU
    THEORETICAL AND MATHEMATICAL PHYSICS, 1990, 84 (02) : 840 - 848
  • [49] Variational Gibbs state preparation on noisy intermediate-scale quantum devices
    Consiglio, Mirko
    Settino, Jacopo
    Giordano, Andrea
    Mastroianni, Carlo
    Plastina, Francesco
    Lorenzo, Salvatore
    Maniscalco, Sabrina
    Goold, John
    Apollaro, Tony J. G.
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [50] Remarks on the relation of the method of Gibbs for the determination of the equation of state with that of the virial and the mean free path.
    Ornstein, LS
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1912, 14 : 853 - 856