Numerical evaluation and robustness of the quantum mean-force Gibbs state

被引:13
|
作者
Chiu, Yiu-Fung [1 ]
Strathearn, Aidan [2 ]
Keeling, Jonathan [1 ]
机构
[1] Univ St Andrews, Sch Phys & Astron, ISUPA, St Andrews KY16 9SS, Fife, Scotland
[2] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
基金
英国工程与自然科学研究理事会;
关键词
REDUCED DENSITY-MATRICES; TENSOR PROPAGATOR; TIME EVOLUTION; THERMODYNAMICS;
D O I
10.1103/PhysRevA.106.012204
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a numerical method to determine the Hamiltonian of mean force (HMF) Gibbs state for a quantum system strongly coupled to a reservoir. The method adapts the time evolving matrix product operator (TEMPO) algorithm to imaginary-time propagation. By comparing the real-time and imaginary-time propagation for a generalized spin-boson model, we confirm that the HMF Gibbs state correctly predicts the steady state. We show that the numerical dynamics match the polaron master equation at strong coupling. We illustrate the potential of the imaginary-time TEMPO approach by exploring reservoir-induced entanglement between qubits.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Inferring the Gibbs state of a small quantum system
    Rau, Jochen
    PHYSICAL REVIEW A, 2011, 84 (01):
  • [22] Tertiary structure prediction using mean-force potentials and internal energy functions: successful prediction for coiled-coil
    ODonoghue, SI
    Nilges, M
    FOLDING & DESIGN, 1997, 2 (04): : S47 - S52
  • [23] Floquet-Gibbs state in open quantum systems
    Shirai, Tatsuhiko
    Mori, Takashi
    Miyashita, Seiji
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (3-4): : 323 - 333
  • [24] Dissipative Variational Quantum Algorithms for Gibbs State Preparation
    Ilin, Yigal
    Arad, Itai
    IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2025, 6
  • [25] Hamiltonian of mean force for damped quantum systems
    Hilt, Stefanie
    Thomas, Benedikt
    Lutz, Eric
    PHYSICAL REVIEW E, 2011, 84 (03)
  • [26] Appearance of Gibbs states in quantum-state tomography
    Rau, Jochen
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [27] Numerical evaluation of coherent-state path integrals in quantum dynamics
    Burghardt, B
    Stolze, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (11): : 2075 - 2090
  • [28] Variational Quantum Gibbs State Preparation with a Truncated Taylor Series
    Wang, Youle
    Li, Guangxi
    Wang, Xin
    PHYSICAL REVIEW APPLIED, 2021, 16 (05)
  • [29] Analyticity of the Gibbs state for a quantum anharmonic crystal: No order parameter
    Minlos, RA
    Pechersky, EA
    Zagrebnov, VA
    ANNALES HENRI POINCARE, 2002, 3 (05): : 921 - 938
  • [30] Efficient computations of quantum canonical Gibbs state in phase space
    Bondar, Denys I.
    Campos, Andre G.
    Cabrera, Renan
    Rabitz, Herschel A.
    PHYSICAL REVIEW E, 2016, 93 (06):