Fuzzy Kakutani-Fan-Glicksberg fixed point theorem and existence of Nash equilibria for fuzzy games

被引:6
|
作者
Liu, Jiuqiang [1 ,2 ]
Yu, Guihai [1 ]
机构
[1] Guizhou Univ Finance & Econ, Coll Big Data Stat, Guiyang 550025, Guizhou, Peoples R China
[2] Eastern Michigan Univ, Dept Math, Ypsilanti, MI 48197 USA
基金
中国国家自然科学基金;
关键词
Brouwer fixed point theorem; Kakutani-Fan-Glicksberg fixed point theorem; Generalized fuzzy games; Nash equilibrium; MAPPINGS;
D O I
10.1016/j.fss.2022.02.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we give fuzzy generalizations to the well-known Brouwer fixed point theorem and Kakutani-Fan-Glicksberg fixed point theorem. As applications, we apply the fuzzy Kakutani-Fan-Glicksberg fixed point theorem to derive an existence theorem for Nash equilibria in generalized fuzzy games with locally convex Hausdorff topological vector spaces for strategy spaces and/or discontinuous payoff functions which generalizes existence theorems for Nash equilibria in generalized games.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:100 / 112
页数:13
相关论文
共 50 条
  • [31] On the L-fuzzy Brouwer fixed point theorem
    Kubiak, T
    Zhang, DX
    FUZZY SETS AND SYSTEMS, 1999, 105 (02) : 287 - 292
  • [32] A common fixed point theorem in a fuzzy metric space
    Vasuki, R
    FUZZY SETS AND SYSTEMS, 1998, 97 (03) : 395 - 397
  • [33] A FIXED POINT THEOREM IN INTUITIONISTIC FUZZY METRIC SPACE
    Chauhan, Sunny
    Khan, M. Alamgir
    Pant, B. D.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 6 (02): : 123 - 140
  • [34] A common fixed point theorem in fuzzy metric spaces
    Islamic Azad University, Aiatollah Amoli Branch, Amol 678, Iran
    不详
    Int. J. Appl. Math. Stat., 2006, JO6 (84-87):
  • [35] Fixed point theorem for a generalized contractive fuzzy mapping
    Abbas, Mujahid
    Turkoglu, Duran
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (01) : 33 - 36
  • [36] FIXED DEGREE FOR FUZZY MAPPINGS AND A GENERALIZATION OF KY-FAN THEOREM
    CHANG, SS
    FUZZY SETS AND SYSTEMS, 1987, 24 (01) : 103 - 112
  • [37] ROTHE FIXED-POINT THEOREM AND EXISTENCE OF EQUILIBRIA IN MONETARY ECONOMIES
    CHICHILNISKY, G
    KALMAN, PJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 65 (01) : 56 - 65
  • [38] Existence of Mild Solutions for Fuzzy Fractional Evolution Equations via Krasnosel'skii Fixed Point Theorem
    Airou, Ismail
    El Mfadel, Ali
    Elomari, M'hamed
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2025, 22 (01):
  • [39] FUZZY CONTROLLERS DESIGN VIA FIXED-POINT THEOREM
    SWIERNIAK, A
    FUZZY SETS AND SYSTEMS, 1986, 20 (02) : 131 - 136
  • [40] New conditions on fuzzy coupled coincidence fixed point theorem
    Wang, Shenghua
    Luo, Ting
    Ciric, Ljubomir
    Alsulami, Saud M.
    FIXED POINT THEORY AND APPLICATIONS, 2014,