Fuzzy Kakutani-Fan-Glicksberg fixed point theorem and existence of Nash equilibria for fuzzy games

被引:6
|
作者
Liu, Jiuqiang [1 ,2 ]
Yu, Guihai [1 ]
机构
[1] Guizhou Univ Finance & Econ, Coll Big Data Stat, Guiyang 550025, Guizhou, Peoples R China
[2] Eastern Michigan Univ, Dept Math, Ypsilanti, MI 48197 USA
基金
中国国家自然科学基金;
关键词
Brouwer fixed point theorem; Kakutani-Fan-Glicksberg fixed point theorem; Generalized fuzzy games; Nash equilibrium; MAPPINGS;
D O I
10.1016/j.fss.2022.02.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we give fuzzy generalizations to the well-known Brouwer fixed point theorem and Kakutani-Fan-Glicksberg fixed point theorem. As applications, we apply the fuzzy Kakutani-Fan-Glicksberg fixed point theorem to derive an existence theorem for Nash equilibria in generalized fuzzy games with locally convex Hausdorff topological vector spaces for strategy spaces and/or discontinuous payoff functions which generalizes existence theorems for Nash equilibria in generalized games.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:100 / 112
页数:13
相关论文
共 50 条
  • [21] New generalized fuzzy metrics and fixed point theorem in fuzzy metric space
    Robert Plebaniak
    Fixed Point Theory and Applications, 2014
  • [22] New generalized fuzzy metrics and fixed point theorem in fuzzy metric space
    Plebaniak, Robert
    FIXED POINT THEORY AND APPLICATIONS, 2014,
  • [23] UPPER SEMICONTINUOUS QUANTUM STOCHASTIC DIFFERENTIAL INCLUSIONS VIA KAKUTANI-FAN FIXED POINT THEOREM
    Ogundiran, M. O.
    Ayoola, E. O.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2012, 21 (01): : 121 - 132
  • [24] A Fixed Point Theorem in a Generalized Fuzzy Metric Space
    Tripathy, Binod Chandra
    Paul, Sudipta
    Das, Nanda Ram
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (02): : 221 - 227
  • [25] Common fixed point theorem in fuzzy metric spaces
    Dosenovic, Tatjana
    2009 7TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS, 2009, : 80 - 83
  • [26] A common fixed point theorem for a pair of fuzzy mappings
    Lee, BS
    Lee, GM
    Cho, SJ
    Kim, DS
    FUZZY SETS AND SYSTEMS, 1998, 98 (01) : 133 - 136
  • [27] A LOCAL FIXED POINT THEOREM ON FUZZY METRIC SPACES
    Sedghi, Shaban
    Altun, Ishak
    Shobe, Nabi
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (02): : 347 - 356
  • [28] A Common Fixed Point Theorem in Fuzzy Metric Spaces
    Saadati, Reza
    Yousefi, Shahriar
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2006, 4 (J06): : 84 - 87
  • [29] Fixed point theorem and infinite fuzzy logic controllers
    Rastovic, D
    CYBERNETICA, 1996, 39 (01): : 49 - 51
  • [30] Tripled fuzzy metric spaces and fixed point theorem
    Tian, Jing-Feng
    Ha, Ming-Hu
    Tian, Da-Zeng
    INFORMATION SCIENCES, 2020, 518 : 113 - 126