The Coulomb interaction in van der Waals heterostructures

被引:31
|
作者
Huang, Le [1 ]
Zhong, MianZeng [2 ]
Deng, HuiXiong [2 ]
Li, Bo [4 ]
Wei, ZhongMing [2 ]
Li, JingBo [1 ,2 ]
Wei, SuHuai [3 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
[4] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
van der Waals heterostructures; gaint Stark effect; Coulomb interaction; charge transfer; TOTAL-ENERGY CALCULATIONS; BLACK PHOSPHORUS; BANDGAP;
D O I
10.1007/s11433-018-9294-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The giant Stark effect (GSE) in a set of van der Waals (vdW) heterostructures is studied using first-principles methods. A straightforward model based on quasi-Fermi levels is proposed to describe the influence of an external perpendicular electric field on both band gap and band edges. Although a general linear GSE is observed, which is induced by the almost linear variation of the band edges of each layer in the heterostructures, when vdW heterostructures is subjected to small electric fields the variation becomes nonlinear. This can be attributed to the band offsets-induced interlayer charge transfer and resulted intraand inter-layer Coulomb interactions. Our work, thus offers new insight into the mechanism of the nonlinear GSE in vdW heterostructures, which is important for the applications of vdW heterostructures on nanoelectronic devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Procedure for Fabrication and Characterization of van der Waals Heterostructures
    Shevchun, A. F.
    Prokudina, M. G.
    Egorov, S. V.
    Tikhonov, E. S.
    JOURNAL OF SURFACE INVESTIGATION, 2024, 18 (03): : 706 - 711
  • [42] Slidable atomic layers in van der Waals heterostructures
    Kobayashi, Yu
    Taniguchi, Takashi
    Watanabe, Kenji
    Maniwa, Yutaka
    Miyata, Yasumitsu
    APPLIED PHYSICS EXPRESS, 2017, 10 (04)
  • [43] Viscous hydrodynamics of excitons in van der Waals heterostructures
    Mantsevich, V. N.
    Glazov, M. M.
    PHYSICAL REVIEW B, 2024, 110 (16)
  • [44] Moire excitons in defective van der Waals heterostructures
    Guo, Hongli
    Zhang, Xu
    Lu, Gang
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (32)
  • [45] Exploring the Stability of Twisted van der Waals Heterostructures
    Silva, Andrea
    Claerbout, Victor E. P.
    Polcar, Tomas
    Kramer, Denis
    Nicolini, Paolo
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 45214 - 45221
  • [46] Hot carrier photovoltaics in van der Waals heterostructures
    Paul, Kamal Kumar
    Kim, Ji-Hee
    Lee, Young Hee
    NATURE REVIEWS PHYSICS, 2021, 3 (03) : 178 - 192
  • [47] Interlayer exciton dynamics in van der Waals heterostructures
    Simon Ovesen
    Samuel Brem
    Christopher Linderälv
    Mikael Kuisma
    Tobias Korn
    Paul Erhart
    Malte Selig
    Ermin Malic
    Communications Physics, 2
  • [48] Excitons and Trions in Bilayer van der Waals Heterostructures
    Semina, M. A.
    PHYSICS OF THE SOLID STATE, 2019, 61 (11) : 2218 - 2223
  • [49] Nonlinear Analog Spintronics with van der Waals Heterostructures
    Omar, S.
    Gurram, M.
    Watanabe, K.
    Taniguchi, T.
    Guimaraes, M. H. D.
    van Wees, B. J.
    PHYSICAL REVIEW APPLIED, 2020, 14 (06)
  • [50] Synthetic Nanosheets of Natural van der Waals Heterostructures
    Banik, Ananya
    Biswas, Kanishka
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (46) : 14561 - 14566