The Coulomb interaction in van der Waals heterostructures

被引:31
|
作者
Huang, Le [1 ]
Zhong, MianZeng [2 ]
Deng, HuiXiong [2 ]
Li, Bo [4 ]
Wei, ZhongMing [2 ]
Li, JingBo [1 ,2 ]
Wei, SuHuai [3 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
[4] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
van der Waals heterostructures; gaint Stark effect; Coulomb interaction; charge transfer; TOTAL-ENERGY CALCULATIONS; BLACK PHOSPHORUS; BANDGAP;
D O I
10.1007/s11433-018-9294-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The giant Stark effect (GSE) in a set of van der Waals (vdW) heterostructures is studied using first-principles methods. A straightforward model based on quasi-Fermi levels is proposed to describe the influence of an external perpendicular electric field on both band gap and band edges. Although a general linear GSE is observed, which is induced by the almost linear variation of the band edges of each layer in the heterostructures, when vdW heterostructures is subjected to small electric fields the variation becomes nonlinear. This can be attributed to the band offsets-induced interlayer charge transfer and resulted intraand inter-layer Coulomb interactions. Our work, thus offers new insight into the mechanism of the nonlinear GSE in vdW heterostructures, which is important for the applications of vdW heterostructures on nanoelectronic devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Quantum microscopy with van der Waals heterostructures
    A. J. Healey
    S. C. Scholten
    T. Yang
    J. A. Scott
    G. J. Abrahams
    I. O. Robertson
    X. F. Hou
    Y. F. Guo
    S. Rahman
    Y. Lu
    M. Kianinia
    I. Aharonovich
    J.-P. Tetienne
    Nature Physics, 2023, 19 : 87 - 91
  • [22] Thermal response in van der Waals heterostructures
    Gandi, Appala Naidu
    Alshareef, Husam N.
    Schwingenschlogl, Udo
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (03)
  • [23] Multiferroicity in atomic van der Waals heterostructures
    Cheng Gong
    Eun Mi Kim
    Yuan Wang
    Geunsik Lee
    Xiang Zhang
    Nature Communications, 10
  • [24] Picosecond photoresponse in van der Waals heterostructures
    Massicotte, M.
    Schmidt, P.
    Vialla, F.
    Schaedler, K. G.
    Reserbat-Plantey, A.
    Watanabe, K.
    Taniguchi, T.
    Tielrooij, K. J.
    Koppens, F. H. L.
    NATURE NANOTECHNOLOGY, 2016, 11 (01) : 42 - +
  • [25] Devices and applications of van der Waals heterostructures
    Chao Li
    Peng Zhou
    David Wei Zhang
    Journal of Semiconductors, 2017, 38 (03) : 48 - 56
  • [26] Strain engineering of van der Waals heterostructures
    Vermeulen, Paul A.
    Mulder, Jefta
    Momand, Jamo
    Kooi, Bart J.
    NANOSCALE, 2018, 10 (03) : 1474 - 1480
  • [27] Dielectric Genome of van der Waals Heterostructures
    Andersen, Kirsten
    Latini, Simone
    Thygesen, Kristian S.
    NANO LETTERS, 2015, 15 (07) : 4616 - 4621
  • [28] Exciton landscape in van der Waals heterostructures
    Hagel, Joakim
    Brem, Samuel
    Linderalv, Christopher
    Erhart, Paul
    Malic, Ermin
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [29] Multiferroicity in atomic van der Waals heterostructures
    Gong, Cheng
    Kim, Eun Mi
    Wang, Yuan
    Lee, Geunsik
    Zhang, Xiang
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [30] Quantum microscopy with van der Waals heterostructures
    Healey, A. J.
    Scholten, S. C.
    Yang, T.
    Scott, J. A.
    Abrahams, G. J.
    Robertson, I. O.
    Hou, X. F.
    Guo, Y. F.
    Rahman, S.
    Lu, Y.
    Kianinia, M.
    Aharonovich, I
    Tetienne, J-P
    NATURE PHYSICS, 2023, 19 (01) : 87 - +