Fractional incidence coloring and star arboricity of graphs

被引:0
|
作者
Yang, Daqing [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Fujian, Peoples R China
关键词
Incidence coloring; fractional coloring; direct and lexicographic products of graphs; star arboricity; planar graphs; MAXIMUM DEGREE-7; PLANAR GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper generalizes the results of Guiduli [B. Guiduli, On incidence coloring and star arboricity of graphs. Discrete Math. 163 (1997), 275-278] on the incidence coloring of graphs to the fractional incidence coloring. Tight asymptotic bounds analogous to Guiduli's results are given for the fractional incidence chromatic number of graphs. The fractional incidence chromatic number of circulant graphs is studied. Relationships between the k-tuple incidence chromatic number and the incidence chromatic number of the direct products and lexicographic products of graphs are established. Finally, for planar graphs G, it is shown that if Delta(G) not equal 6, then chi(i)(G) <= Delta(G) + 5; if Delta(G) = 6, then chi(i)(G) <= Delta(G) + 6; where chi(i)(G) denotes the incidence chromatic number of G. This improves the bound chi(i)(G) <= Delta(G) + 7 for planar graphs given in [M. Hosseini Dolama, E. Sopena, X. Zhu, Incidence coloring of k-degenerated graphs. Discrete Math. 283 (2004), no. 1-3, 121-128].
引用
收藏
页码:213 / 224
页数:12
相关论文
共 50 条
  • [41] Star Edge Coloring of Some Classes of Graphs
    Bezegova, L'udmila
    Luzar, Borut
    Mockovciakova, Martina
    Sotak, Roman
    Skrekovski, Riste
    JOURNAL OF GRAPH THEORY, 2016, 81 (01) : 73 - 82
  • [42] Star Coloring of Graphs with Girth at Least Five
    M. A. Shalu
    T. P. Sandhya
    Graphs and Combinatorics, 2016, 32 : 2121 - 2134
  • [43] Star Coloring of Graphs with Girth at Least Five
    Shalu, M. A.
    Sandhya, T. P.
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 2121 - 2134
  • [44] 6-Star-Coloring of Subcubic Graphs
    Chen, Min
    Raspaud, Andre
    Wang, Weifan
    JOURNAL OF GRAPH THEORY, 2013, 72 (02) : 128 - 145
  • [45] Star edge coloring of the Cartesian product of graphs
    Omoomi, Behnaz
    Dastjerdi, Marzieh Vahid
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 79 : 15 - 30
  • [46] Star edge coloring of generalized Petersen graphs
    Omoomi, Behnaz
    Dastjerdi, Marzieh Vahid
    arXiv,
  • [47] FRACTIONAL COLORING METHODS WITH APPLICATIONS TO DEGENERATE GRAPHS AND GRAPHS ON SURFACES
    Gimbel, John
    Kundgen, Andre
    Li, Binlong
    Thomassen, Carsten
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (03) : 1415 - 1430
  • [48] FRACTIONAL Q-EDGE-COLORING OF GRAPHS
    Czap, Julius
    Mihok, Peter
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (03) : 509 - 519
  • [49] Some results on fractional edge coloring of graphs
    Wang, Jihui
    Liu, Guizhen
    ARS COMBINATORIA, 2007, 83 : 249 - 255
  • [50] A note on fractional DP-coloring of graphs
    Dominik, Daniel
    Kaul, Hemanshu
    Mudrock, Jeffrey A.
    DISCRETE MATHEMATICS, 2024, 347 (10)