For two disjoint vertex subsets X, Y of a graph G, we denote X←Y\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X \leftarrow Y$$\end{document} if every vertex of Y has at most one non-neighbour in X. A k-clique star partition of a graph G is V(G)=Q1∪Q2∪…∪Qk\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V(G)=Q_1\cup Q_2\cup \ldots \cup Q_k$$\end{document} such that (i) Qi\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_{i}$$\end{document} is a clique in G for all 1≤i≤k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1\le i \le k$$\end{document} and (ii) Qi←Qj\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_i\leftarrow Q_j$$\end{document} for all 1≤i<j≤k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1 \le i < j\le k$$\end{document}. We prove that (a) every {3K1,2K2}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{3K_1, 2K_2 \}$$\end{document}-free graph admits a 4ω(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$4\omega (G)$$\end{document}-clique star partition and (b) if G is a graph with girth at least five, then its star chromatic number χs(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _s (G)$$\end{document} satisfies χs(G)≤4α(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _s (G) \le 4 \alpha (G)$$\end{document}.
机构:
Indian Inst Informat Technol Design & Mfg, Madras 600127, Tamil Nadu, IndiaIndian Inst Informat Technol Design & Mfg, Madras 600127, Tamil Nadu, India
Shalu, M. A.
Sandhya, T. P.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Informat Technol Design & Mfg, Madras 600127, Tamil Nadu, IndiaIndian Inst Informat Technol Design & Mfg, Madras 600127, Tamil Nadu, India
机构:
Jiangsu Second Normal Univ, Dept Math & Comp Sci, Nanjing 210013, Jiangsu, Peoples R ChinaJiangsu Second Normal Univ, Dept Math & Comp Sci, Nanjing 210013, Jiangsu, Peoples R China
Xu, Xinping
Zhang, Yiying
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Inst Math, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R ChinaJiangsu Second Normal Univ, Dept Math & Comp Sci, Nanjing 210013, Jiangsu, Peoples R China
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R ChinaCharles Univ Prague, Comp Sci Inst CSI, Prague 11800, Czech Republic