Existence of a solution to the stochastic nonlocal Cahn-Hilliard Navier-Stokes model via a splitting-up method

被引:8
|
作者
Deugoue, G. [1 ,2 ]
Moghomye, B. Jidjou [1 ]
Medjo, T. Tachim [2 ]
机构
[1] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
[2] Florida Int Univ, MMC, Dept Math & Stat, Miami, FL 33199 USA
关键词
stochastic Navier-Stokes; nonlocal Cahn-Hilliard; weak martingale solutions; splitting-up method; cylindrical Wiener process; compactness; DIFFERENTIAL-EQUATIONS; CONVERGENCE; MARTINGALE; BEHAVIOR; SYSTEMS;
D O I
10.1088/1361-6544/ab8020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a stochastic diffuse interface model which describes the motion of an incompressible isothermal mixture of two immiscible fluids under the influence of stochastic external forces in a bounded domain of R-d, d = 2, 3. The model consists of the stochastic Navier-Stokes equations coupled with a nonlocal Cahn-Hilliard equation. We prove the existence of a global weak martingale solution via a numerical scheme based on splitting-up method.
引用
收藏
页码:3424 / 3469
页数:46
相关论文
共 50 条