Existence of a solution to the stochastic nonlocal Cahn-Hilliard Navier-Stokes model via a splitting-up method

被引:8
|
作者
Deugoue, G. [1 ,2 ]
Moghomye, B. Jidjou [1 ]
Medjo, T. Tachim [2 ]
机构
[1] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
[2] Florida Int Univ, MMC, Dept Math & Stat, Miami, FL 33199 USA
关键词
stochastic Navier-Stokes; nonlocal Cahn-Hilliard; weak martingale solutions; splitting-up method; cylindrical Wiener process; compactness; DIFFERENTIAL-EQUATIONS; CONVERGENCE; MARTINGALE; BEHAVIOR; SYSTEMS;
D O I
10.1088/1361-6544/ab8020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a stochastic diffuse interface model which describes the motion of an incompressible isothermal mixture of two immiscible fluids under the influence of stochastic external forces in a bounded domain of R-d, d = 2, 3. The model consists of the stochastic Navier-Stokes equations coupled with a nonlocal Cahn-Hilliard equation. We prove the existence of a global weak martingale solution via a numerical scheme based on splitting-up method.
引用
收藏
页码:3424 / 3469
页数:46
相关论文
共 50 条
  • [31] On the Strong Solutions for a Stochastic 2D nonlocal Cahn-Hilliard-Navier-Stokes Model
    Deugoue, G.
    Ngana, A. Ndongmo
    Medjo, T. Tachim
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 17 (01) : 19 - 60
  • [32] Nonlocal operator method for the Cahn-Hilliard phase field model
    Ren, Huilong
    Zhuang, Xiaoying
    Nguyen-Thoi Trung
    Rabczuk, Timon
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
  • [33] Coupling Navier-Stokes and Cahn-Hilliard equations in a two-dimensional annular flow configuration
    Vignal, Philippe
    Sarmiento, Adel
    Cortes, Adriano M. A.
    Dalcin, Lisandro
    Calo, Victor. M.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 934 - 943
  • [34] Energy identity for the incompressible Cahn-Hilliard/Navier-Stokes system with non-degenerate mobility
    Georgiadis, Stefanos
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [35] Convergence for a Splitting-Up Scheme for the 3D Stochastic Navier-Stokes-α Model
    Deugoue, Gabriel
    Sango, Mamadou
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2014, 32 (02) : 253 - 279
  • [36] On the stationary nonlocal Cahn-Hilliard-Navier-Stokes system: Existence, uniqueness and exponential stability
    Biswas, Tania
    Dharmatti, Sheetal
    Mohan, Manil T.
    Perisetti, Lakshmi Naga Mahendranath
    ASYMPTOTIC ANALYSIS, 2021, 125 (1-2) : 59 - 99
  • [37] A PARALLEL SPLITTING-UP METHOD FOR PARTIAL-DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS TO NAVIER-STOKES EQUATIONS
    LU, T
    NEITTAANMAKI, P
    TAI, XC
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1992, 26 (06): : 673 - 708
  • [38] High-order discontinuous Galerkin approximation for a three-phase incompressible Navier-Stokes/Cahn-Hilliard model
    Manzanero, Juan
    Redondo, Carlos
    Chavez-Modena, Miguel
    Rubio, Gonzalo
    Valero, Eusebio
    Gomez-Alvarez, Susana
    Rivero-Jimenez, Angel
    COMPUTERS & FLUIDS, 2022, 244
  • [39] Existence and regularity of solution for a stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion
    Antonopoulou, Dimitra C.
    Karali, Georgia
    Millet, Annie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (03) : 2383 - 2417
  • [40] Numerical solution of coupled Cahn-Hilliard Navier-Stokes equations for two-phase flows having variable density and viscosity
    Sohaib, Muhammad
    Shah, Abdullah
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023,