Existence of a solution to the stochastic nonlocal Cahn-Hilliard Navier-Stokes model via a splitting-up method

被引:8
|
作者
Deugoue, G. [1 ,2 ]
Moghomye, B. Jidjou [1 ]
Medjo, T. Tachim [2 ]
机构
[1] Univ Dschang, Dept Math & Comp Sci, POB 67, Dschang, Cameroon
[2] Florida Int Univ, MMC, Dept Math & Stat, Miami, FL 33199 USA
关键词
stochastic Navier-Stokes; nonlocal Cahn-Hilliard; weak martingale solutions; splitting-up method; cylindrical Wiener process; compactness; DIFFERENTIAL-EQUATIONS; CONVERGENCE; MARTINGALE; BEHAVIOR; SYSTEMS;
D O I
10.1088/1361-6544/ab8020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a stochastic diffuse interface model which describes the motion of an incompressible isothermal mixture of two immiscible fluids under the influence of stochastic external forces in a bounded domain of R-d, d = 2, 3. The model consists of the stochastic Navier-Stokes equations coupled with a nonlocal Cahn-Hilliard equation. We prove the existence of a global weak martingale solution via a numerical scheme based on splitting-up method.
引用
收藏
页码:3424 / 3469
页数:46
相关论文
共 50 条
  • [1] Splitting-up scheme for the stochastic Cahn-Hilliard Navier-Stokes model
    Deugoue, Gabriel
    Moghomye, Boris Jidjou
    Medjo, Theodore Tachim
    STOCHASTICS AND DYNAMICS, 2021, 21 (01)
  • [2] Solution to a stochastic 3D nonlocal Cahn–Hilliard–Navier–Stokes model with shear dependent viscosity via a splitting-up method
    G. Deugoué
    B. Jidjou Moghomye
    T. Tachim Medjo
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [3] Solution to a stochastic 3D nonlocal Cahn-Hilliard-Navier-Stokes model with shear dependent viscosity via a splitting-up method
    Deugoue, G.
    Moghomye, B. Jidjou
    Medjo, T. Tachim
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (02):
  • [4] A Simple Parallel Solution Method for the Navier-Stokes Cahn-Hilliard Equations
    Adam, Nadja
    Franke, Florian
    Aland, Sebastian
    MATHEMATICS, 2020, 8 (08)
  • [5] Preconditioning of a Coupled Cahn-Hilliard Navier-Stokes System
    Bosch, Jessica
    Kahle, Christian
    Stoll, Martin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (02) : 603 - 628
  • [6] OPTIMAL DISTRIBUTED CONTROL OF A NONLOCAL CAHN-HILLIARD/NAVIER-STOKES SYSTEM IN TWO DIMENSIONS
    Frigeri, Sergio
    Rocca, Elisabetta
    Sprekels, Juergen
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (01) : 221 - 250
  • [7] Advected phase-field method for bounded solution of the Cahn-Hilliard Navier-Stokes equations
    Dadvand, Abdolrahman
    Bagheri, Milad
    Samkhaniani, Nima
    Marschall, Holger
    Woerner, Martin
    PHYSICS OF FLUIDS, 2021, 33 (05)
  • [8] On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility
    Abels, Helmut
    Depner, Daniel
    Garcke, Harald
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (06): : 1175 - 1190
  • [9] THE LEAST SQUARES SPECTRAL ELEMENT METHOD FOR THE NAVIER-STOKES AND CAHN-HILLIARD EQUATIONS
    Park, Keunsoo
    Dorao, Carlos A.
    Chiapero, Ezequiel M.
    Fernandino, Maria
    PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2015, VOL 1, 2015,
  • [10] An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model
    Minjeaud, Sebastian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (02) : 584 - 618