Contraction obstructions for treewidth

被引:32
|
作者
Fomin, Fedor V. [1 ]
Golovach, Petr [2 ]
Thilikos, Dimitrios M. [3 ]
机构
[1] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[2] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3HP, England
[3] Univ Athens, Dept Math, GR-15784 Athens, Greece
基金
英国工程与自然科学研究理事会;
关键词
Graph minor; Graph contraction; Bidimensionality; Treewidth; GRAPH MINORS; BIDIMENSIONALITY; ALGORITHMS;
D O I
10.1016/j.jctb.2011.02.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide two parameterized graphs Gamma(k), Pi(k) with the following property: for every positive integer k, there is a constant c(k) such that every graph G with treewidth at least c(k), contains one of K-k, Gamma(k), Pi(k) as a contraction, where K-k is a complete graph on k vertices. These three parameterized graphs can be seen as "obstruction patterns" for the treewidth with respect to the contraction partial ordering. We also present some refinements of this result along with their algorithmic consequences, (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:302 / 314
页数:13
相关论文
共 50 条
  • [41] Backdoor Treewidth for SAT
    Ganian, Robert
    Ramanujan, M. S.
    Szeider, Stefan
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING (SAT 2017), 2017, 10491 : 20 - 37
  • [42] Approximation Algorithms for Treewidth
    Amir, Eyal
    ALGORITHMICA, 2010, 56 (04) : 448 - 479
  • [43] Encoding Treewidth into SAT
    Samer, Marko
    Veith, Helmut
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2009, PROCEEDINGS, 2009, 5584 : 45 - 50
  • [44] On Sparsification for Computing Treewidth
    Jansen, Bart M. P.
    ALGORITHMICA, 2015, 71 (03) : 605 - 635
  • [45] OBSTRUCTIONS
    PEARLSTEIN, E
    AMERICAN JOURNAL OF PHYSICS, 1985, 53 (09) : 810 - 810
  • [46] Lifting obstructions, ordinary obstructions and spherical fibrations
    C. Bohr
    Archiv der Mathematik, 2002, 78 : 90 - 96
  • [47] Lifting obstructions, ordinary obstructions and spherical fibrations
    Bohr, C
    ARCHIV DER MATHEMATIK, 2002, 78 (01) : 90 - 96
  • [48] On the relation between lifting obstructions and ordinary obstructions
    Bohr, C
    TOPOLOGY AND ITS APPLICATIONS, 2000, 103 (03) : 283 - 290
  • [49] A Note on Treewidth in Random Graphs
    Wang, Chaoyi
    Liu, Tian
    Cui, Peng
    Xu, Ke
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, 2011, 6831 : 491 - +
  • [50] THE TREEWIDTH AND PATHWIDTH OF GRAPH UNIONS
    Alecu, Bogdan
    V. Lozin, Vadim
    Quiroz, Daniel a.
    Rabinovich, Roman
    Razgon, Igor
    Zamaraev, Viktor
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (01) : 261 - 276