Contraction obstructions for treewidth

被引:32
|
作者
Fomin, Fedor V. [1 ]
Golovach, Petr [2 ]
Thilikos, Dimitrios M. [3 ]
机构
[1] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[2] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3HP, England
[3] Univ Athens, Dept Math, GR-15784 Athens, Greece
基金
英国工程与自然科学研究理事会;
关键词
Graph minor; Graph contraction; Bidimensionality; Treewidth; GRAPH MINORS; BIDIMENSIONALITY; ALGORITHMS;
D O I
10.1016/j.jctb.2011.02.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide two parameterized graphs Gamma(k), Pi(k) with the following property: for every positive integer k, there is a constant c(k) such that every graph G with treewidth at least c(k), contains one of K-k, Gamma(k), Pi(k) as a contraction, where K-k is a complete graph on k vertices. These three parameterized graphs can be seen as "obstruction patterns" for the treewidth with respect to the contraction partial ordering. We also present some refinements of this result along with their algorithmic consequences, (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:302 / 314
页数:13
相关论文
共 50 条
  • [31] A Note on Multiflows and Treewidth
    Chekuri, Chandra
    Khanna, Sanjeev
    Shepherd, F. Bruce
    ALGORITHMICA, 2009, 54 (03) : 400 - 412
  • [32] A Note on Multiflows and Treewidth
    Chandra Chekuri
    Sanjeev Khanna
    F. Bruce Shepherd
    Algorithmica, 2009, 54 : 400 - 412
  • [33] Turbocharging Treewidth Heuristics
    Serge Gaspers
    Joachim Gudmundsson
    Mitchell Jones
    Julián Mestre
    Stefan Rümmele
    Algorithmica, 2019, 81 : 439 - 475
  • [34] OBSTRUCTIONS
    DEIMEN, JM
    WEIS, JS
    SCIENCE, 1969, 165 (3891) : 336 - &
  • [35] On the treewidth of NK landscapes
    Gao, Y
    Culberson, J
    GENETIC AND EVOLUTIONARY COMPUTATION - GECCO 2003, PT I, PROCEEDINGS, 2003, 2723 : 948 - 954
  • [36] On the treewidth of toroidal grids
    Kiyomi, Masashi
    Okamoto, Yoshio
    Otachi, Yota
    DISCRETE APPLIED MATHEMATICS, 2016, 198 : 303 - 306
  • [37] THE PATHWIDTH AND TREEWIDTH OF COGRAPHS
    BODLAENDER, HL
    MOHRING, RH
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (02) : 181 - 188
  • [38] Patterns with bounded treewidth
    Reidenbach, Daniel
    Schmid, Markus L.
    INFORMATION AND COMPUTATION, 2014, 239 : 87 - 99
  • [39] Treewidth of Grid Subsets
    Berger, Eli
    Dvorak, Zdenek
    Norin, Sergey
    COMBINATORICA, 2018, 38 (06) : 1337 - 1352
  • [40] On the treewidth of Hanoi graphs
    Eppstein, David
    Frishberg, Daniel
    Maxwell, William
    THEORETICAL COMPUTER SCIENCE, 2022, 906 : 1 - 17