Contraction obstructions for treewidth

被引:32
|
作者
Fomin, Fedor V. [1 ]
Golovach, Petr [2 ]
Thilikos, Dimitrios M. [3 ]
机构
[1] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[2] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3HP, England
[3] Univ Athens, Dept Math, GR-15784 Athens, Greece
基金
英国工程与自然科学研究理事会;
关键词
Graph minor; Graph contraction; Bidimensionality; Treewidth; GRAPH MINORS; BIDIMENSIONALITY; ALGORITHMS;
D O I
10.1016/j.jctb.2011.02.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide two parameterized graphs Gamma(k), Pi(k) with the following property: for every positive integer k, there is a constant c(k) such that every graph G with treewidth at least c(k), contains one of K-k, Gamma(k), Pi(k) as a contraction, where K-k is a complete graph on k vertices. These three parameterized graphs can be seen as "obstruction patterns" for the treewidth with respect to the contraction partial ordering. We also present some refinements of this result along with their algorithmic consequences, (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:302 / 314
页数:13
相关论文
共 50 条
  • [1] The structure of obstructions to treewidth and pathwidth
    Chlebíková, J
    DISCRETE APPLIED MATHEMATICS, 2002, 120 (1-3) : 61 - 71
  • [2] The structure and number of obstructions to treewidth
    Ramachandramurthi, S
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1997, 10 (01) : 146 - 157
  • [3] Achievable sets, brambles, and sparse treewidth obstructions
    Lucena, Brian
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (08) : 1055 - 1065
  • [4] Contraction and treewidth lower bounds
    Bodlaender, HL
    Koster, AMCA
    Wolle, T
    ALGORITHMS ESA 2004, PROCEEDINGS, 2004, 3221 : 628 - 639
  • [5] Contraction obstructions for connected graph searching
    Best, Micah J.
    Gupta, Arvind
    Thilikos, Dimitrios M.
    Zoros, Dimitris
    DISCRETE APPLIED MATHEMATICS, 2016, 209 : 27 - 47
  • [6] Separating Layered Treewidth and Row Treewidth
    Bose, Prosenjit
    Dujmovic, Vida
    Javarsineh, Mehrnoosh
    Morin, Pat
    Wood, David R.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2022, 24 (01):
  • [7] Boxicity and treewidth
    Chandran, L. Sunil
    Sivadasan, Naveen
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) : 733 - 744
  • [8] Discovering treewidth
    Bodlaender, HL
    SOFSEM 2005:THEORY AND PRACTICE OF COMPUTER SCIENCE, 2005, 3381 : 1 - 16
  • [9] Girth and treewidth
    Chandran, LS
    Subramanian, CR
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 93 (01) : 23 - 32
  • [10] Domino treewidth
    Bodlaender, HL
    Engelfriet, J
    JOURNAL OF ALGORITHMS, 1997, 24 (01) : 94 - 123